	Reference Book	
CS738: Advanced Compiler Optimizat Typed Arithmetic Expression Amey Karkare karkare@cse.iitk.ac.in http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur	S	Languages by Benjamin C. Pierce
t:= - terms true - constant true false - constant true if t then t else t - conditional 0 - constant zero succ t - successor pred t - predecessor iszero t - zero test	Puage Recap: The Set of Val V := true false 0 succ V	ues – values – value true – value false – value zero – successor value

Let's add Types to the Language	The Typing Relation	
T := – Types Bool – Booleans Nat – Natural Numbers	A set of rules assigning types to terms $\vdash t : T \text{ denotes "term } t \text{ has type } T"$ $0 : \text{Nat}$ $\frac{t_1 : \text{Nat}}{\text{succ } t_1 : \text{Nat}}$ $t_1 : \text{Nat}$	
	$\frac{t_1 : Nat}{t_1 : Nat}$ $\frac{t_1 : Nat}{iszero t_1 : Bool}$	
 The Typing Relation (contd) A set of rules assigning types to terms ⊢ t : T denotes "term t has type T" true : Bool false : Bool t1 : Bool t2 : T t3 : T if t1 then t2 else t3 : T 	 The typing Relation: Definition The typing relation for arithmetic expressions is the smallest binary relation between terms and types satisfying all instances of the rules defined earlier. A term t is typeable (or well typed) if there is some T such that t : T. 	

Inversion of the Typing Relation

- ▶ If \vdash 0 : *R*, then *R* = Nat.
- ▶ If \vdash succ t_1 : R, then R = Nat and \vdash t_1 : Nat.
- ▶ If \vdash pred t_1 : R, then R = Nat and \vdash t_1 : Nat.
- ▶ If \vdash iszero t_1 : R, then R = Bool and \vdash t_1 : Nat.
- ▶ If ⊢ true : *R*, then *R* = Bool.
- If \vdash false : *R*, then *R* = Bool.
- ▶ If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then
 - \blacktriangleright $\Gamma \vdash t_1$: Bool
 - \blacktriangleright $\Gamma \vdash t_2 : R$
 - \blacktriangleright $\Gamma \vdash t_3 : R$

Uniqueness of Types

- Every term *t* has at most one type.
- ► If *t* is typeable, then its type is unique.
- Moreover, there is just one derivation of this typing built from the inference rules.

Safety = Preservation + Progress

- The type system is safe (also called sound)
- Well-typed programs do not "go wrong."
 - Do not reach a "stuck state."

Progress: A well-typed term is not stuck.

- If $\vdash t : T$, then *t* is either a value or there exists some *t'* such that $t \rightarrow t'$.
- Preservation: If a well-typed term takes a step of evaluation, then the resulting term is also well-typed.
 - If $\vdash t : T$ and $t \to t'$, then $\vdash t' : T$.