
CS738: Advanced Compiler Optimizations

Typed Arithmetic Expressions

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur

Reference Book

Types and Programming Languages by Benjamin C. Pierce

Recap: Untyped Arithmetic Expression Language

t := – terms
true – constant true
false – constant false
if t then t else t – conditional
0 – constant zero
succ t – successor
pred t – predecessor
iszero t – zero test

Recap: The Set of Values

v := – values
true – value true
false – value false
0 – value zero
succ v – successor value



Let’s add Types to the Language

T := – Types
Bool – Booleans
Nat – Natural Numbers

The Typing Relation

◮ A set of rules assigning types to terms
◮ ⊢ t : T denotes “term t has type T ”

0 : Nat

t1 : Nat
succ t1 : Nat

t1 : Nat
pred t1 : Nat

t1 : Nat
iszero t1 : Bool

The Typing Relation (contd. . . )

◮ A set of rules assigning types to terms
◮ ⊢ t : T denotes “term t has type T ”

true : Bool

false : Bool

t1 : Bool t2 : T t3 : T
if t1 then t2 else t3 : T

The Typing Relation: Definition

◮ The typing relation for arithmetic expressions is the
smallest binary relation between terms and types
satisfying all instances of the rules defined earlier.

◮ A term t is typeable (or well typed) if there is some T such
that t : T .



Inversion of the Typing Relation

◮ If ⊢ 0 : R, then R = Nat.
◮ If ⊢ succ t1 : R, then R = Nat and ⊢ t1 : Nat.
◮ If ⊢ pred t1 : R, then R = Nat and ⊢ t1 : Nat.
◮ If ⊢ iszero t1 : R, then R = Bool and ⊢ t1 : Nat.
◮ If ⊢ true : R, then R = Bool.
◮ If ⊢ false : R, then R = Bool.
◮ If Γ ⊢ if t1 then t2 else t3 : R, then

◮ Γ ⊢ t1 : Bool
◮ Γ ⊢ t2 : R
◮ Γ ⊢ t3 : R

Uniqueness of Types

◮ Every term t has at most one type.
◮ If t is typeable, then its type is unique.
◮ Moreover, there is just one derivation of this typing built

from the inference rules.

Safety = Preservation + Progress

◮ The type system is safe (also called sound)
◮ Well-typed programs do not “go wrong.”

◮ Do not reach a “stuck state.”
◮ Progress: A well-typed term is not stuck.

◮ If ⊢ t : T , then t is either a value or there exists some t ′

such that t → t ′.
◮ Preservation: If a well-typed term takes a step of

evaluation, then the resulting term is also well-typed.
◮ If ⊢ t : T and t → t ′, then ⊢ t ′ : T .


