Interprocedural Data Flow Analysis

Is \(a \times b \) available at IN of \(n_1 \)?

Challenges

- Infeasible paths
- Recursion
- Function pointers and virtual functions
- Dynamic functions (functional programs)

Infeasible Paths

How to avoid data flowing along invalid paths?

\[r_1 \rightarrow c_1 \rightarrow r_2 \rightarrow b_2 \rightarrow c_2 \rightarrow r_2 \rightarrow e_2 \rightarrow n_1 \]

\[\text{main} \]

\[\text{read } a, b \]

\[r = a \times b \]

\[\text{call } p \]

\[t = a \times b \]

\[\text{print } t \]

\[e_1 \rightarrow \text{EXIT} \]

\[\text{if } (a == 0) \]

\[F \]

\[a = a - 1 \]

\[\text{call } p \]

\[t = a \times b \]

\[e_2 \rightarrow \text{return} \]

\[T \]
Recursion

How to handle Infinite paths?
... → r₂ → c₂ → r₂ → c₂ → r₂ ...

main
r₁
read a, b
r = a ∗ b

c₁ call p

t = a ∗ b
print t

e₁ EXIT

r₂ if (a == 0)
 b₂ a = a − 1
 c₂ call p

 n₁ t = a ∗ b
 n₁ return

Function Variables

- Target of a function can not be determined statically
- Function Pointers (including virtual functions)
  ```
  double (*fun)(double arg);
  ...
  if (cond)
      fun = sqrt;
  else
      fun = fabs;
  ...
  fun(x);
  ```
- Dynamically created functions (in functional languages)
- No static control flow graph!

Two Approaches

- Functional approach
 - procedures as structured blocks
 - input-output relation (functions) for each block
 - function used at call site to compute the effect of procedure on program state
- Call-strings approach
 - single flow graph for whole program
 - value of interest tagged with the history of unfinished procedure calls

Notations and Terminology

M. Sharir, and A. Pnueli. **Two Approaches to Inter-Procedural Data-Flow Analysis.**
In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications.
Prentice-Hall, 1981.
Control Flow Graph

Control Flow Graph for Procedure p

Assumptions

Data Flow Framework

Parameterless procedures, to ignore the problems of

- aliasing
- recursion stack for formal parameters

- No procedure variables (pointers, virtual functions etc.)

- (L, F): data flow framework
- L: a meet-semilattice
 - Largest element Ω
- F: space of propagation functions
 - Closed under composition and meet
 - Contains $id_L(x) = x$ and $f_\Omega(x) = \Omega$
- $f_{(m,n)} \in F$ represents propagation function for edge (m,n) of control flow graph $G = (N, E)$
 - Change of DF values from the start of m, through m, to the start of n
Data Flow Equations

\[x_r = \text{BoundaryInfo} \]
\[x_n = \bigwedge_{(m,n) \in E} f_{(m,n)}(x_m) \quad n \in N - r \]

- MFP solution, approximation of MOP

\[y_n = \bigwedge \{ f_p(\text{BoundaryInfo}) : p \in \text{path}_G(r, n) \} \quad n \in N \]

Functional Approach to Interprocedural Analysis

Functional Approach

- Procedures treated as structures of blocks
- Computes relationship between DF value at entry node and related data at any internal node of procedure
- At call site, DF value propagated directly using the computed relation

Interprocedural Flow Graph

First Representation:

\[G = \bigcup \{ G_p : p \text{ is a procedure in program} \} \]
\[G_p = (N_p, E_p, r_p) \]
\[N_p = \text{set of all basic block of } p \]
\[r_p = \text{root block of } p \]
\[E_p = \text{set of edges of } p \]
\[E_p = E_p^0 \cup E_p^1 \]
\[(m, n) \in E_p^0 \iff \text{direct control transfer from } m \text{ to } n \]
\[(m, n) \in E_p^1 \iff m \text{ is a call block, and } n \text{ immediately follows } m \]
Interprocedural Flow Graph: 1st Representation

\[
\begin{align*}
\text{main} & \quad r_1 \\
\quad E_{\text{main}}^0 & \quad \text{read } a, b \\
\quad c_1 & \quad \text{call } p \\
\quad E_{\text{main}}^1 & \quad t = a \ast b \\
\quad e_1 & \quad \text{print } t \\
\quad E_{\text{main}}^1 & \quad \text{EXIT}
\end{align*}
\]

\[
\begin{align*}
p & \quad r_2 \\
\quad E_p^0 & \quad \text{if } (a == 0) \\
\quad b_2 & \quad a = a - 1 \\
\quad E_p^1 & \quad c_2 \quad \text{call } p \\
\quad n_2 & \quad t = a \ast b \\
\quad E_p^1 & \quad \text{return}
\end{align*}
\]

Interprocedural Flow Graph: 2nd Representation

- Call edge \((m, n)\):
 - \(m\) is a call block, say calling \(p\)
 - \(n\) is root block of \(p\)
- Return edge \((m, n)\):
 - \(m\) is an exit block of \(p\)
 - \(n\) is a block immediately following a call to \(p\)
- Call edge \((m, r_p)\) corresponds to return edge \((e_q, n)\)
 - if \(p = q\) and
 - \((m, n) \in E_s^1\) for some procedure \(s\)

\[
\begin{align*}
\text{main} & \quad r_1 \\
\quad E_0^0 & \quad \text{read } a, b \\
\quad E_0^1 & \quad r = a \ast b \\
\quad c_1 & \quad \text{call } p \\
\quad E_0^1 & \quad t = a \ast b \\
\quad e_1 & \quad \text{EXIT}
\end{align*}
\]

\[
\begin{align*}
p & \quad r_2 \\
\quad E_0^1 & \quad \text{if } (a == 0) \\
\quad b_2 & \quad a = a - 1 \\
\quad E_0^1 & \quad c_2 \quad \text{call } p \\
\quad n_2 & \quad t = a \ast b \\
\quad E_0^1 & \quad \text{return}
\end{align*}
\]

\[
G^* = (N^*, E^*, r_1)
\]

- \(r_1\) = root block of main
- \(N^* = \bigcup_p N_p\)
- \(E^* = E_0^0 \cup E_1^1\)
- \(E_0^0 = \bigcup_p E_0^0_p\)

\[(m, n) \in E_1^1 \iff (m, n) \text{ is either a call edge or a return edge}\]
Interprocedurally Valid Paths

- G^* ignores the special nature of call and return edges
- Not all paths in G^* are feasible
 - do not represent potentially valid execution paths
- IVP(r_1, n): set of all interprocedurally valid paths from r_1 to n
- Path $q \in \text{path}_{G^*}(r_1, n)$ is in IVP(r_1, n)
 - iff sequence of all E^1 edges in q (denoted q_1) is proper

Proper sequence

- q_1 without any return edge is proper
- let $q_1[i]$ be the first return edge in q_1. q_1 is proper if
 - $i > 1$; and
 - $q_1[i - 1]$ is call edge corresponding to $q_1[i]$; and
 - q_1' obtained from deleting $q_1[i - 1]$ and $q_1[i]$ from q_1 is proper

Interprocedurally Valid Complete Paths

- IVP₀(r_p, n) for procedure p and node $n \in N_p$
- set of all interprocedurally valid paths q in G^* from r_p to n s.t.
 - Each call edge has corresponding return edge in q restricted to E^1

IVPs

- main
 - $r_1 \xrightarrow{\text{read a, b}} r = a \ast b$
 - $c_1 \xrightarrow{\text{call p}}$
 - $t = a \ast b$
 - $n_1 \xrightarrow{\text{print t}}$
 - $e_1 \xrightarrow{\text{EXIT}}$
- $r_1 \to c_1 \to r_2 \to c_2 \to r_2 \to e_2 \to n_2 \to e_2 \to n_1 \to e_1 \in \text{IVP}(r_1, e_1)$
Path Decomposition

\[q \in \text{IVP}(r_{\text{main}}, n) \]
\[\iff \]
\[q = q_1 \parallel (c_1, r_{p_2}) \parallel q_2 \parallel \cdots \parallel (c_{j-1}, r_{p_j}) \parallel q_j \]
where for each \(i < j \), \(q_i \in \text{IVP}_0(r_{p_i}, c_i) \) and \(q_j \in \text{IVP}_0(r_{p_j}, n) \)