CS738: Advanced Compiler Optimizations

Flow Graph Theory

Amey Karkare
karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738
Department of CSE, IIT Kanpur
Agenda

- Speeding up DFA
- Depth of a flow graph
- Natural Loops
Acknowledgement

Rest of the slides based on the material at
http://infolab.stanford.edu/~ullman/dragon/w06/w06.html
Proper ordering of nodes of a flow graph speeds up the iterative algorithms: **depth-first ordering.**
Speeding up DFA

- Proper ordering of nodes of a flow graph speeds up the iterative algorithms: \textbf{depth-first ordering}.
- “Normal” flow graphs have a surprising property — \textit{reducibility} — that simplifies several matters.
Proper ordering of nodes of a flow graph speeds up the iterative algorithms: **depth-first ordering**.

“Normal” flow graphs have a surprising property — **reducibility** — that simplifies several matters.

Outcome: few iterations “normally” needed.
Depth-First Search

- Start at entry.
Depth-First Search

- Start at entry.
- If you can follow an edge to an unvisited node, do so.
Depth-First Search

- Start at entry.
- If you can follow an edge to an unvisited node, do so.
- If not, backtrack to your *parent* (node from which you were visited).
Depth-First Spanning Tree (DFST)

- Root = Entry.
Depth-First Spanning Tree (DFST)

- Root = *Entry*.
- Tree edges are the edges along which we first visit the node at the head.
DFST Example
DFST Example
DFST Example
DFST Example
Depth-First Node Order

▶ The reverse of the order in which a DFS retreats from the nodes.
Depth-First Node Order

- The reverse of the order in which a DFS retreats from the nodes.
- Alternatively, reverse of postorder traversal of the tree.
DF Order Example
Four Kind of Edges

1. Tree edges.
Four Kind of Edges

1. Tree edges.
2. **Forward edges**: node to proper descendant.
Four Kind of Edges

1. Tree edges.
2. **Forward edges**: node to proper descendant.
3. **Retreating edges**: node to ancestor.
Four Kind of Edges

1. Tree edges.
2. **Forward edges**: node to proper descendant.
3. **Retreating edges**: node to ancestor.
4. **Cross edges**: between two node, neither of which is an ancestor of the other.
Of these edges, only retreating edges go from high to low in DF order.
Of these edges, only retreating edges go from high to low in DF order.

Most surprising: all cross edges go right to left in the DFST.
A Little Magic

- Of these edges, only retreating edges go from high to low in DF order.
- Most surprising: all cross edges go right to left in the DFST.
 - Assuming we add children of any node from the left.
Example: Non-Tree Edges
Example: Non-Tree Edges

Retreating
Example: Non-Tree Edges
Example: Non-Tree Edges

Retreating

Forward

Cross
“Normal” flow graphs are “reducible.”
“Normal” flow graphs are “reducible.”
“Dominator” needed to explain reducibility.
“Normal” flow graphs are “reducible.”

“Dominators” needed to explain reducibility.

In reducible flow graphs, loops are well defined, retreating edges are unique (and called “back” edges).
“Normal” flow graphs are “reducible.”

“Dominators” needed to explain reducibility.

In reducible flow graphs, loops are well defined, retreating edges are unique (and called “back” edges).

Leads to relationship between DF order and efficient iterative algorithm.
Dominators

- Node d dominates node n if every path from the $Entry$ to n goes through d.
Dominators

- Node d **dominates** node n if every path from the *Entry* to n goes through d.

Dominators

- Node d dominates node n if every path from the $Entry$ to n goes through d.
- Quick observations:
Node d dominates node n if every path from the Entry to n goes through d.

Quick observations:
- Every node dominates itself.
Dominators

- Node d dominates node n if every path from the Entry to n goes through d.
- Quick observations:
 - Every node dominates itself.
 - The entry dominates every node.
Example: Dominators

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example: Dominators

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example: Dominators

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example: Dominators

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example: Dominators

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>4</td>
<td>1, 4</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example: Dominators

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>4</td>
<td>1, 4</td>
</tr>
<tr>
<td>5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>
Common Dominator Cases

- The test of a while loop dominates all blocks in the loop body.
Common Dominator Cases

- The test of a while loop dominates all blocks in the loop body.
- The test of an if-then-else dominates all blocks in either branch.
Back Edges

- An edge is a **back edge** if its head dominates its tail.
Back Edges

- An edge is a **back edge** if its head dominates its tail.
- **Theorem:** Every back edge is a retreating edge in every DFST of every flow graph.
Back Edges

- An edge is a **back edge** if its head dominates its tail.
- **Theorem:** Every back edge is a retreating edge in every DFST of every flow graph.
 - Proof? Discuss/Exercise
Back Edges

- An edge is a **back edge** if its head dominates its tail.
- **Theorem:** Every back edge is a retreating edge in every DFST of every flow graph.
 - Proof? Discuss/Exercise
 - Converse almost always true, but not always.
Example: Back Edges

```
<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>4</td>
<td>1, 4</td>
</tr>
<tr>
<td>5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>
```
Example: Back Edges

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>4</td>
<td>1, 4</td>
</tr>
<tr>
<td>5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>
Reducible Flow Graphs

A flow graph is **reducible** if every retreating edge in any DFST for that flow graph is a back edge.
Reducible Flow Graphs

- A flow graph is **reducible** if every retreating edge in any DFST for that flow graph is a back edge.

- **Testing reducibility:** Take any DFST for the flow graph, remove the back edges, and check that the result is acyclic.
Example: Remove Back Edges

<table>
<thead>
<tr>
<th>Node</th>
<th>Dominators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>4</td>
<td>1, 4</td>
</tr>
<tr>
<td>5</td>
<td>1, 5</td>
</tr>
</tbody>
</table>
Example: Remove Back Edges

Remaining graph is acyclic.
Why Reducibility?

▸ **Folk theorem:** All flow graphs in practice are reducible.

▸ **Fact:** If you use only while-loops, for-loops, repeat-loops, if-then(-else), break, and continue, then your flow graph is reducible.
Example: Nonreducible Graph
Example: Nonreducible Graph

In any DFST, one of these edges will be a retreating edge.
Example: Nonreducible Graph

In any DFST, one of these edges will be a retreating edge.
Example: Nonreducible Graph

In any DFST, one of these edges will be a retreating edge.
Why Care About Back/Retreating Edges?

- Proper ordering of nodes during iterative algorithm assures number of passes limited by the number of “nested” back edges.
Why Care About Back/Retreating Edges?

- Proper ordering of nodes during iterative algorithm assures number of passes limited by the number of “nested” back edges.
- Depth of nested loops upper-bounds the number of nested back edges.
DF Order and Retreating Edges

- Suppose that for a RD analysis, we visit nodes during each iteration in DF order.
DF Order and Retreating Edges

- Suppose that for a RD analysis, we visit nodes during each iteration in DF order.
- The fact that a definition d reaches a block will propagate in one pass along any increasing sequence of blocks.
Suppose that for a RD analysis, we visit nodes during each iteration in DF order.

The fact that a definition d reaches a block will propagate in one pass along any increasing sequence of blocks.

When d arrives along a retreating edge, it is too late to propagate d from OUT to IN.
Example: DF Order

Node 2 generates definition d.
Example: DF Order

Node 2 generates definition d. Other nodes “empty” w.r.t. d.
Example: DF Order

Node 2 generates definition d. Other nodes “empty” w.r.t. d. Does d reach node 4?
Example: DF Order

Node 2 generates definition d.
Other nodes “empty” w.r.t. d.
Does d reach node 4?
Node 2 generates definition \(d \).
Other nodes “empty” w.r.t. \(d \).
Does \(d \) reach node 4?
Example: DF Order

Node 2 generates definition d. Other nodes “empty” w.r.t. d. Does d reach node 4?
Node 2 generates definition d. Other nodes “empty” w.r.t. d. Does d reach node 4?
Node 2 generates definition \(d \).
Other nodes “empty” w.r.t. \(d \).
Does \(d \) reach node 4?
Example: DF Order

Node 2 generates definition \(d \).
Other nodes “empty” w.r.t. \(d \).
Does \(d \) reach node 4?
Example: DF Order

Node 2 generates definition \(d \).
Other nodes “empty” w.r.t. \(d \).
Does \(d \) reach node 4?
Example: DF Order

Node 2 generates definition \(d \).
Other nodes "empty" w.r.t. \(d \).
Does \(d \) reach node 4?
Example: DF Order

Node 2 generates definition \(d \).
Other nodes “empty” w.r.t. \(d \).
Does \(d \) reach node 4?
Example: DF Order

Node 2 generates definition d.
Other nodes “empty” w.r.t. d.
Does d reach node 4?
Depth of a Flow Graph

The depth of a flow graph is the greatest number of retreating edges along any acyclic path.
Depth of a Flow Graph

- The **depth** of a flow graph is the greatest number of retreating edges along any acyclic path.
- For RD, if we use DF order to visit nodes, we converge in depth+2 passes.
Depth of a Flow Graph

- The **depth** of a flow graph is the greatest number of retreating edges along any acyclic path.
- For RD, if we use DF order to visit nodes, we converge in depth+2 passes.
 - Depth+1 passes to follow that number of increasing segments.
Depth of a Flow Graph

- The **depth** of a flow graph is the greatest number of retreating edges along any acyclic path.
- For RD, if we use DF order to visit nodes, we converge in depth+2 passes.
 - Depth+1 passes to follow that number of increasing segments.
 - 1 more pass to realize we converged.
Example: Depth = 2
Example: Depth = 2

\[\text{increasing} \]
Example: Depth = 2

retreating

increasing
Example: Depth = 2

retreating

increasing → increasing
Example: Depth = 2

retreating increasing retreating increasing
Example: Depth = 2

increasing → retreating → increasing → retreating → increasing
Similarly ...

- AE also works in depth+2 passes.
Similarly . . .

- AE also works in depth+2 passes.
 - Unavailability propagates along retreat-free node sequences in one pass.
Similarly . . .

- AE also works in depth+2 passes.
 - Unavailability propagates along retreat-free node sequences in one pass.
- So does LV if we use reverse of DF order.
Similarly . . .

- AE also works in depth+2 passes.
 - Unavailability propagates along retreat-free node sequences in one pass.
- So does LV if we use reverse of DF order.
 - A use propagates backward along paths that do not use a retreating edge in one pass.
In General . . .

- The depth+2 bound works for any monotone bit-vector framework, as long as information only needs to propagate along acyclic paths.
 - Example: if a definition reaches a point, it does so along an acyclic path.
Why Depth+2 is Good?

- Normal control-flow constructs produce reducible flow graphs with the number of back edges at most the nesting depth of loops.
 - Nesting depth tends to be small.
Example: Nested Loops

3 nested while loops.
Example: Nested Loops

3 nested while loops.

depth = 3.
Example: Nested Loops

3 nested while loops.

depth = 3.

3 nested do-while loops.
Example: Nested Loops

3 nested while loops.
depth = 3.

3 nested do-while loops.
depth = 1.
The natural loop of a back edge $a \rightarrow b$ is $\{b\}$ plus the set of nodes that can reach a without going through b.
Natural Loops

- The **natural loop** of a back edge $a \rightarrow b$ is $\{b\}$ plus the set of nodes that can reach a without going through b.

- Theorem: two natural loops are either disjoint, identical, or nested.
Natural Loops

- The **natural loop** of a back edge \(a \rightarrow b \) is \(\{b\} \) plus the set of nodes that can reach \(a \) without going through \(b \).

- **Theorem:** two natural loops are either disjoint, identical, or nested.

- **Proof:** Discuss/Exercise
Example: Natural Loops
Example: Natural Loops

Natural loop 3 → 2
Example: Natural Loops

Natural loop 3 \rightarrow 2

Natural loop 5 \rightarrow 1
Reading Assignment

- New Dragon Book (Aho, Lam, Sethi, Ullman)
 - Chapter 9