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Code Generation by Tree Walking

I Pushes dynamic programming to a pre-processing stage prior

to code-generation time.

I Simplifies dynamic programming effort by assuming

unbounded number of registers.

I Only cases taken into account are different patterns matching

a node.

I Normalization of costs
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Code Generation by Tree Walking – Example

I An example expression tree and an example machine:
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Code Generation by Tree Walking – Example

I The tree can be covered in more than one ways

rule 4 (reg)
rule 1 (goal) 

rule 4 (reg)
rule 6 (addr)

rule 5 (reg)
rule 6 (addr)

rule 2 (reg) Reg 

Fetch 

Fetch

Intrule 2 (reg)
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rule 8 (addr)

rule 4 (reg)
rule 6 (addr)
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rule 3 (reg)
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rule 9 (int)

Cost = 7Cost = 6

I We are finally interested in the least cost tree.

I We also want to do some pre-processing before we get any

tree,



Code Generation by Tree Walking – Example

I The tree can be covered in more than one ways

rule 4 (reg)
rule 1 (goal) 

rule 4 (reg)
rule 6 (addr)

rule 5 (reg)
rule 6 (addr)

rule 2 (reg) Reg 

Fetch 

Fetch

Intrule 2 (reg)

rule 4 (reg)
rule 1 (goal) 

rule 8 (addr)

rule 4 (reg)
rule 6 (addr)

Reg 

Fetch 

Fetch

Int

Plus Plus

rule 3 (reg)
rule 9 (int)

rule 9 (int)

Cost = 7Cost = 6

I We are finally interested in the least cost tree.

I We also want to do some pre-processing before we get any

tree,



Code Generation by Tree Walking – Example

I The tree can be covered in more than one ways

rule 4 (reg)
rule 1 (goal) 

rule 4 (reg)
rule 6 (addr)

rule 5 (reg)
rule 6 (addr)

rule 2 (reg) Reg 

Fetch 

Fetch

Intrule 2 (reg)

rule 4 (reg)
rule 1 (goal) 

rule 8 (addr)

rule 4 (reg)
rule 6 (addr)

Reg 

Fetch 

Fetch

Int

Plus Plus

rule 3 (reg)
rule 9 (int)

rule 9 (int)

Cost = 7Cost = 6

I We are finally interested in the least cost tree.

I We also want to do some pre-processing before we get any

tree,



Code Generation by Tree Walking – Example

I How is this done? Given a tree,

I traverse the tree bottom up. With the help

of a transition table, annotate each node of the tree with a state.

reg <− int,  1
goal <− reg,  1
addr <− reg,  1
int <− Int,  0

reg <− Reg,  0
goal <− reg,  0
addr <− reg,  0

reg <− Plus(reg, reg),  2
goal <− reg,  2
addr <− reg,  2

reg <− Fetch(addr),  4
goal <− reg,  4
addr <− reg,  4

reg <− Fetch(addr),  6
goal <− reg,  6
addr <− reg,  6

Reg 
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Fetch

Int

Plus

state 2:state 1:

state 5:

state 4:

state 3:
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Code Generation by Tree Walking

I State: Gives the minimum cost of evaluating a node in the

expression tree to different non-terminals.

I Transition table: Gives

I state corresponding to leaf nodes (0-ary terminals).

I given the states of children, gives state of interior nodes (n-ary

terminals).
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Code Generation by Tree Walking – Example

I A second top-down pass determines the instructions to be

used at each node assuming that the root is to be evaluated

in goal.
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state 2:state 1:

state 5:
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state 3:

reg <− Fetch(addr),  6
goal <− reg,  6
addr <− reg,  6

reg <− Fetch(addr),  4
goal <− reg,  4
addr <− reg,  4

reg <− Plus(reg, reg),  2
goal <− reg,  2
addr <− reg,  2

reg <− int,  1
goal <− reg,  1
addr <− reg,  1
int <− Int,  0

reg <− Reg,  0
goal <− reg,  0
addr <− reg,  0



Precomputing the Transition Table

I For 0-ary terminals

I Find least cost covering rules. A covering rule can cover the

terminal with its pattern.

I Find least cost chain rules. A chain rule is of the form

nonterminal ← nonterminal .
Int goal <− reg,  1 

reg <− int,  1
int <− Int,  0
addr <− reg,  1

−− chain rule

−− covering rule
−− chain rule

−− chain rule

I Cost of reducing Int to goal is

cost of reducing Int to int (0) +

cost of reducing int to reg (1) +

cost of reducing reg to goal (0) +
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Precomputing the Transition Table

I n-ary terminals

I If both children of Plus are in state 2, in which state would

Plus be?

I The rule reg ← Plus(reg, reg) gives

reg <− Plus(reg, reg),  2
goal <− reg,  2

addr <− reg,  2Plus

reg regstate 2:

int <− Int, 0 
addr <− reg,  1
goal <− reg,  1
reg <− int,  1 state 2:

int <− Int, 0 

goal <− reg,  1
addr <− reg,  1

reg <− int,  1
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Precomputing the Transition Table

I The rule reg ← Plus(reg, int) gives

Plus

reg state 2:

int <− Int, 0 
addr <− reg,  1
goal <− reg,  1
reg <− int,  1 state 2:

int <− Int, 0 

goal <− reg,  1
addr <− reg,  1

reg <− int,  1int

reg <− Plus(reg, int),  3
goal <− reg,  3

addr <− reg,  3

I Conclusion: If the leaves of Plus are both in state 2, then Plus

will be in

reg <− Plus(reg, reg),  2
goal <− reg,  2

addr <− reg,  2

state 6:
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Precomputing the Transition Table

I Similarly, we should also find the transitions for Plus on pairs

(state1, state1), (state1, state2), (state2, state6)

I . . .

I Will this process always terminate?
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Precomputing the Transition Table

I Consider computation of the state at Fetch, with reg in the

state shown.
Fetch

reg reg <− Plus(reg, reg),  0
goal <− reg,  0
addr <− reg,  0

I Successive computation of the states for Fetch yield:

Fetch

reg

reg <− Fetch( addr),  2
goal <− reg,  2
addr <− reg,  2

reg <− Plus(reg, reg),  0
goal <− reg,  0
addr <− reg,  0

Fetch

reg reg <− Plus(reg, reg),  2
goal <− reg,  2
addr <− reg,  2

reg <− Fetch( addr),  4
goal <− reg,  4
addr <− reg,  4

and so on . . .
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Relativization of states

I The solution is to relativize the costs in a state with respect

to the item with the cheapest cost

I After relativization, the state on the left changes to the state

on the right:
reg <− Plus(reg, reg),  2
goal <− reg,  2
addr <− reg,  2

reg <− Plus(reg, reg),  0
goal <− reg,  0
addr <− reg,  0

I Does this make the resulting transition table different?

Obviously not.

I Does this necessarily lead to a finite number of states?
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Relativization of states

I Consider a machine with only these two instructions involving

Fetch. Fetch

reg

reg

cost = 1 

Fetch

int

int

cost = 3 

I Consider a state in which the reg ← . . . item is 2 cheaper than

the int ← . . . item.

I Transits to a state in which the reg ← . . . item is 4 cheaper

than the int ← . . . item.

I . . .

I Practical solution: If cost difference between any pair of

terminals is greater than a threshold, instruction set is

rejected.

I Typical instruction sets do not lead to divergence.
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Relativization of states

I Naively generated transition tables are very large.

I Typical CISC machine (1995 vintage) will generate 1000

states.

I Two states can be merged if the difference is not important in

all possible situtaions

I Two major optimizations

I State reduction by projecting out irrelevant items

I State reduction by triangle trimming.
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State Reduction by Projecting out Irrelevant Items

I Consider a machine in which the only instructions involving

Plus are:
Plus

reg reg

Plus

reg int

I Also assume that there are two states:
goal <− reg,  0
reg <− Reg,  0
addr <− reg, 0 

state 1: state 2:goal <− reg,  1
reg <− int,  1
addr <− reg,  1
int <− Int, 0 
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Plus are:
Plus
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State Reduction by Projecting out Irrelevant Items

I The normal transition table for Plus:
first argument

second argument

state 1 state 2Plus 

state 1

state 2



State Reduction by Projecting out Irrelevant Items

I Since the first argument of Plus is a reg, we can project the

int ← . . . item out of both the states. The resulting transition

table for Plus is:

first argument

second argument

state 1 state 2Plus 

state 1

state 2

state 1



State Reduction by Triangle Trimming

I Assume that a state s has two items nt ← . . . and nt’ ← . . . .

Under what conditions can we say that nt ← . . . is subsumed

by nt’ ← . . . and thus can be removed from s.

I Assume that the state has been used in the context of the

operator op at the argument position shown
   op 

nt1 nt2 nt3

nti

*
nt  (state s)
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State Reduction by Triangle Trimming

I The general situation under which nt ← . . . is subsumed by

nt’ ← . . . is:
   op 

nt1 nt2 nt3
*

nt  

nt2’ nt3’

* * *nt’  

nt1’

   op 

nti

ntj

*
*
(s)

I The cost of the rule nti ← . . . and the black chain reductions

should be less than the rule ntj ← . . . and the red chain

reductions.

I Further this should be true in all contexts in which s can be

used.
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BURG – A Code Generation Tool

I Bottom Up Rewriting based code Generator

I Sample BURG input.

traverse tree
macros to 

%{
  #define NODEPTR_TYPE treepointer
  #define OP_LABEL(p) ((p)−>op)   
  #define LEFT_CHILD(p) ((p) −> left)
  #define RIGHT_CHILD(p) ((p) −> right)
  #define STATE_LABEL(p) ((p) −> state_label)
%}
  %start goal

  %term Mul=5 Plus=6 
  %term Assign=1 Constant=2 Fetch=3 Four=4

  %%
  con: Constant                 = 1 (0);
  con: Four                     = 2 (0);
  addr: con                     = 3 (0);
  addr: Plus(con, reg)          = 4 (0);
  addr: Plus(con,Mul(Four,reg)) = 5 (0);
  reg: Fetch(addr)              = 6 (1);
  reg: Assign(addr,reg)         = 7 (1); 
  goal: reg                     = 8 (0);

BURG’s name for node type user’s name for node type

cost rule number

terminals

rule 

non−terminals 

pattern 
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BURG – A Code Generation Tool

I Two traversals over the subject tree.

I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.
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BURG – A Code Generation Tool

I Here is an outline of a code-generator produced

with the help of BURG. Constructs in red are BURG generated.

  burg_kids(p, ruleno, kids);
  for (i = 0; nts[i]; i++)
    reduce(kids[i], nts[i]);
}

parse(NODEPTR_TYPE p) {

  reduce(p, 1)   /* and reduce it, goal = 1*/
}

reduce(NODEPTR_TYPE p, int goalint) {

  NODEPTR_TYPE kids[10];
  int i;

  burg_label(p)  /* label the tree */

  short *nts = burg_nts[ruleno] ;

  /* ... do something with this node... */

/* process the children of this node  */ 

  int ruleno =    burg_rule(STATE_LABEL(p), goalint);


