
Code Generation by Tree Walking

Amey Karkare

karkare@cse.iitk.ac.in

April 10, 2019

karkare@cse.iitk.ac.in

Code Generation by Tree Walking

I Pushes dynamic programming to a pre-processing stage prior

to code-generation time.

I Simplifies dynamic programming effort by assuming

unbounded number of registers.

I Only cases taken into account are different patterns matching

a node.

I Normalization of costs

Code Generation by Tree Walking

I Pushes dynamic programming to a pre-processing stage prior

to code-generation time.

I Simplifies dynamic programming effort by assuming

unbounded number of registers.

I Only cases taken into account are different patterns matching

a node.

I Normalization of costs

Code Generation by Tree Walking

I Pushes dynamic programming to a pre-processing stage prior

to code-generation time.

I Simplifies dynamic programming effort by assuming

unbounded number of registers.

I Only cases taken into account are different patterns matching

a node.

I Normalization of costs

Code Generation by Tree Walking

I Pushes dynamic programming to a pre-processing stage prior

to code-generation time.

I Simplifies dynamic programming effort by assuming

unbounded number of registers.

I Only cases taken into account are different patterns matching

a node.

I Normalization of costs

Code Generation by Tree Walking – Example

I An example expression tree and an example machine:

Reg

+

Fetch

Fetch

Int

1 goal <− reg

reg <− Reg

addr <− reg

8

7

6

5

4

3

2 0

0

1

2

0

0

addr <− Plus

reg

reg <− Plus

regreg

reg <− Fetch

addr

9 int <− Int

int

reg <− int

addr <− int

1

0

3

rule no

rule

terminal

non−terminal
pattern

rule cost

Code Generation by Tree Walking – Example

I The tree can be covered in more than one ways

rule 4 (reg)
rule 1 (goal)

rule 4 (reg)
rule 6 (addr)

rule 5 (reg)
rule 6 (addr)

rule 2 (reg) Reg

Fetch

Fetch

Intrule 2 (reg)

rule 4 (reg)
rule 1 (goal)

rule 8 (addr)

rule 4 (reg)
rule 6 (addr)

Reg

Fetch

Fetch

Int

Plus Plus

rule 3 (reg)
rule 9 (int)

rule 9 (int)

Cost = 7Cost = 6

I We are finally interested in the least cost tree.

I We also want to do some pre-processing before we get any

tree,

Code Generation by Tree Walking – Example

I The tree can be covered in more than one ways

rule 4 (reg)
rule 1 (goal)

rule 4 (reg)
rule 6 (addr)

rule 5 (reg)
rule 6 (addr)

rule 2 (reg) Reg

Fetch

Fetch

Intrule 2 (reg)

rule 4 (reg)
rule 1 (goal)

rule 8 (addr)

rule 4 (reg)
rule 6 (addr)

Reg

Fetch

Fetch

Int

Plus Plus

rule 3 (reg)
rule 9 (int)

rule 9 (int)

Cost = 7Cost = 6

I We are finally interested in the least cost tree.

I We also want to do some pre-processing before we get any

tree,

Code Generation by Tree Walking – Example

I The tree can be covered in more than one ways

rule 4 (reg)
rule 1 (goal)

rule 4 (reg)
rule 6 (addr)

rule 5 (reg)
rule 6 (addr)

rule 2 (reg) Reg

Fetch

Fetch

Intrule 2 (reg)

rule 4 (reg)
rule 1 (goal)

rule 8 (addr)

rule 4 (reg)
rule 6 (addr)

Reg

Fetch

Fetch

Int

Plus Plus

rule 3 (reg)
rule 9 (int)

rule 9 (int)

Cost = 7Cost = 6

I We are finally interested in the least cost tree.

I We also want to do some pre-processing before we get any

tree,

Code Generation by Tree Walking – Example

I How is this done? Given a tree,

I traverse the tree bottom up. With the help

of a transition table, annotate each node of the tree with a state.

reg <− int, 1
goal <− reg, 1
addr <− reg, 1
int <− Int, 0

reg <− Reg, 0
goal <− reg, 0
addr <− reg, 0

reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Fetch(addr), 4
goal <− reg, 4
addr <− reg, 4

reg <− Fetch(addr), 6
goal <− reg, 6
addr <− reg, 6

Reg

Fetch

Fetch

Int

Plus

state 2:state 1:

state 5:

state 4:

state 3:

Code Generation by Tree Walking – Example

I How is this done? Given a tree,

I traverse the tree bottom up. With the help

of a transition table, annotate each node of the tree with a state.

reg <− int, 1
goal <− reg, 1
addr <− reg, 1
int <− Int, 0

reg <− Reg, 0
goal <− reg, 0
addr <− reg, 0

reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Fetch(addr), 4
goal <− reg, 4
addr <− reg, 4

reg <− Fetch(addr), 6
goal <− reg, 6
addr <− reg, 6

Reg

Fetch

Fetch

Int

Plus

state 2:state 1:

state 5:

state 4:

state 3:

Code Generation by Tree Walking

I State: Gives the minimum cost of evaluating a node in the

expression tree to different non-terminals.

I Transition table: Gives

I state corresponding to leaf nodes (0-ary terminals).

I given the states of children, gives state of interior nodes (n-ary

terminals).

Code Generation by Tree Walking

I State: Gives the minimum cost of evaluating a node in the

expression tree to different non-terminals.

I Transition table: Gives

I state corresponding to leaf nodes (0-ary terminals).

I given the states of children, gives state of interior nodes (n-ary

terminals).

Code Generation by Tree Walking

I State: Gives the minimum cost of evaluating a node in the

expression tree to different non-terminals.

I Transition table: Gives

I state corresponding to leaf nodes (0-ary terminals).

I given the states of children, gives state of interior nodes (n-ary

terminals).

Code Generation by Tree Walking

I State: Gives the minimum cost of evaluating a node in the

expression tree to different non-terminals.

I Transition table: Gives

I state corresponding to leaf nodes (0-ary terminals).

I given the states of children, gives state of interior nodes (n-ary

terminals).

Code Generation by Tree Walking – Example

I A second top-down pass determines the instructions to be

used at each node assuming that the root is to be evaluated

in goal.

Reg

Fetch

Fetch

Int

Plus

state 2:state 1:

state 5:

state 4:

state 3:

reg <− Fetch(addr), 6
goal <− reg, 6
addr <− reg, 6

reg <− Fetch(addr), 4
goal <− reg, 4
addr <− reg, 4

reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− int, 1
goal <− reg, 1
addr <− reg, 1
int <− Int, 0

reg <− Reg, 0
goal <− reg, 0
addr <− reg, 0

Precomputing the Transition Table

I For 0-ary terminals

I Find least cost covering rules. A covering rule can cover the

terminal with its pattern.

I Find least cost chain rules. A chain rule is of the form

nonterminal ← nonterminal .
Int goal <− reg, 1

reg <− int, 1
int <− Int, 0
addr <− reg, 1

−− chain rule

−− covering rule
−− chain rule

−− chain rule

I Cost of reducing Int to goal is

cost of reducing Int to int (0) +

cost of reducing int to reg (1) +

cost of reducing reg to goal (0) +

Precomputing the Transition Table

I For 0-ary terminals

I Find least cost covering rules. A covering rule can cover the

terminal with its pattern.

I Find least cost chain rules. A chain rule is of the form

nonterminal ← nonterminal .
Int goal <− reg, 1

reg <− int, 1
int <− Int, 0
addr <− reg, 1

−− chain rule

−− covering rule
−− chain rule

−− chain rule

I Cost of reducing Int to goal is

cost of reducing Int to int (0) +

cost of reducing int to reg (1) +

cost of reducing reg to goal (0) +

Precomputing the Transition Table

I For 0-ary terminals

I Find least cost covering rules. A covering rule can cover the

terminal with its pattern.

I Find least cost chain rules. A chain rule is of the form

nonterminal ← nonterminal .
Int goal <− reg, 1

reg <− int, 1
int <− Int, 0
addr <− reg, 1

−− chain rule

−− covering rule
−− chain rule

−− chain rule

I Cost of reducing Int to goal is

cost of reducing Int to int (0) +

cost of reducing int to reg (1) +

cost of reducing reg to goal (0) +

Precomputing the Transition Table

I For 0-ary terminals

I Find least cost covering rules. A covering rule can cover the

terminal with its pattern.

I Find least cost chain rules. A chain rule is of the form

nonterminal ← nonterminal .
Int goal <− reg, 1

reg <− int, 1
int <− Int, 0
addr <− reg, 1

−− chain rule

−− covering rule
−− chain rule

−− chain rule

I Cost of reducing Int to goal is

cost of reducing Int to int (0) +

cost of reducing int to reg (1) +

cost of reducing reg to goal (0) +

Precomputing the Transition Table

I n-ary terminals

I If both children of Plus are in state 2, in which state would

Plus be?

I The rule reg ← Plus(reg, reg) gives

reg <− Plus(reg, reg), 2
goal <− reg, 2

addr <− reg, 2Plus

reg regstate 2:

int <− Int, 0
addr <− reg, 1
goal <− reg, 1
reg <− int, 1 state 2:

int <− Int, 0

goal <− reg, 1
addr <− reg, 1

reg <− int, 1

Precomputing the Transition Table

I n-ary terminals

I If both children of Plus are in state 2, in which state would

Plus be?

I The rule reg ← Plus(reg, reg) gives

reg <− Plus(reg, reg), 2
goal <− reg, 2

addr <− reg, 2Plus

reg regstate 2:

int <− Int, 0
addr <− reg, 1
goal <− reg, 1
reg <− int, 1 state 2:

int <− Int, 0

goal <− reg, 1
addr <− reg, 1

reg <− int, 1

Precomputing the Transition Table

I n-ary terminals

I If both children of Plus are in state 2, in which state would

Plus be?

I The rule reg ← Plus(reg, reg) gives

reg <− Plus(reg, reg), 2
goal <− reg, 2

addr <− reg, 2Plus

reg regstate 2:

int <− Int, 0
addr <− reg, 1
goal <− reg, 1
reg <− int, 1 state 2:

int <− Int, 0

goal <− reg, 1
addr <− reg, 1

reg <− int, 1

Precomputing the Transition Table

I The rule reg ← Plus(reg, int) gives

Plus

reg state 2:

int <− Int, 0
addr <− reg, 1
goal <− reg, 1
reg <− int, 1 state 2:

int <− Int, 0

goal <− reg, 1
addr <− reg, 1

reg <− int, 1int

reg <− Plus(reg, int), 3
goal <− reg, 3

addr <− reg, 3

I Conclusion: If the leaves of Plus are both in state 2, then Plus

will be in

reg <− Plus(reg, reg), 2
goal <− reg, 2

addr <− reg, 2

state 6:

Precomputing the Transition Table

I The rule reg ← Plus(reg, int) gives

Plus

reg state 2:

int <− Int, 0
addr <− reg, 1
goal <− reg, 1
reg <− int, 1 state 2:

int <− Int, 0

goal <− reg, 1
addr <− reg, 1

reg <− int, 1int

reg <− Plus(reg, int), 3
goal <− reg, 3

addr <− reg, 3

I Conclusion: If the leaves of Plus are both in state 2, then Plus

will be in

reg <− Plus(reg, reg), 2
goal <− reg, 2

addr <− reg, 2

state 6:

Precomputing the Transition Table

I Similarly, we should also find the transitions for Plus on pairs

(state1, state1), (state1, state2), (state2, state6)

I . . .

I Will this process always terminate?

Precomputing the Transition Table

I Similarly, we should also find the transitions for Plus on pairs

(state1, state1), (state1, state2), (state2, state6)

I . . .

I Will this process always terminate?

Precomputing the Transition Table

I Similarly, we should also find the transitions for Plus on pairs

(state1, state1), (state1, state2), (state2, state6)

I . . .

I Will this process always terminate?

Precomputing the Transition Table

I Consider computation of the state at Fetch, with reg in the

state shown.
Fetch

reg reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

I Successive computation of the states for Fetch yield:

Fetch

reg

reg <− Fetch(addr), 2
goal <− reg, 2
addr <− reg, 2

reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

Fetch

reg reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Fetch(addr), 4
goal <− reg, 4
addr <− reg, 4

and so on . . .

Precomputing the Transition Table

I Consider computation of the state at Fetch, with reg in the

state shown.
Fetch

reg reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

I Successive computation of the states for Fetch yield:

Fetch

reg

reg <− Fetch(addr), 2
goal <− reg, 2
addr <− reg, 2

reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

Fetch

reg reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Fetch(addr), 4
goal <− reg, 4
addr <− reg, 4

and so on . . .

Relativization of states

I The solution is to relativize the costs in a state with respect

to the item with the cheapest cost

I After relativization, the state on the left changes to the state

on the right:
reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

I Does this make the resulting transition table different?

Obviously not.

I Does this necessarily lead to a finite number of states?

Relativization of states

I The solution is to relativize the costs in a state with respect

to the item with the cheapest cost

I After relativization, the state on the left changes to the state

on the right:
reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

I Does this make the resulting transition table different?

Obviously not.

I Does this necessarily lead to a finite number of states?

Relativization of states

I The solution is to relativize the costs in a state with respect

to the item with the cheapest cost

I After relativization, the state on the left changes to the state

on the right:
reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

I Does this make the resulting transition table different?

Obviously not.

I Does this necessarily lead to a finite number of states?

Relativization of states

I The solution is to relativize the costs in a state with respect

to the item with the cheapest cost

I After relativization, the state on the left changes to the state

on the right:
reg <− Plus(reg, reg), 2
goal <− reg, 2
addr <− reg, 2

reg <− Plus(reg, reg), 0
goal <− reg, 0
addr <− reg, 0

I Does this make the resulting transition table different?

Obviously not.

I Does this necessarily lead to a finite number of states?

Relativization of states

I Consider a machine with only these two instructions involving

Fetch. Fetch

reg

reg

cost = 1

Fetch

int

int

cost = 3

I Consider a state in which the reg ← . . . item is 2 cheaper than

the int ← . . . item.

I Transits to a state in which the reg ← . . . item is 4 cheaper

than the int ← . . . item.

I . . .

I Practical solution: If cost difference between any pair of

terminals is greater than a threshold, instruction set is

rejected.

I Typical instruction sets do not lead to divergence.

Relativization of states

I Consider a machine with only these two instructions involving

Fetch. Fetch

reg

reg

cost = 1

Fetch

int

int

cost = 3

I Consider a state in which the reg ← . . . item is 2 cheaper than

the int ← . . . item.

I Transits to a state in which the reg ← . . . item is 4 cheaper

than the int ← . . . item.

I . . .

I Practical solution: If cost difference between any pair of

terminals is greater than a threshold, instruction set is

rejected.

I Typical instruction sets do not lead to divergence.

Relativization of states

I Consider a machine with only these two instructions involving

Fetch. Fetch

reg

reg

cost = 1

Fetch

int

int

cost = 3

I Consider a state in which the reg ← . . . item is 2 cheaper than

the int ← . . . item.

I Transits to a state in which the reg ← . . . item is 4 cheaper

than the int ← . . . item.

I . . .

I Practical solution: If cost difference between any pair of

terminals is greater than a threshold, instruction set is

rejected.

I Typical instruction sets do not lead to divergence.

Relativization of states

I Consider a machine with only these two instructions involving

Fetch. Fetch

reg

reg

cost = 1

Fetch

int

int

cost = 3

I Consider a state in which the reg ← . . . item is 2 cheaper than

the int ← . . . item.

I Transits to a state in which the reg ← . . . item is 4 cheaper

than the int ← . . . item.

I . . .

I Practical solution: If cost difference between any pair of

terminals is greater than a threshold, instruction set is

rejected.

I Typical instruction sets do not lead to divergence.

Relativization of states

I Consider a machine with only these two instructions involving

Fetch. Fetch

reg

reg

cost = 1

Fetch

int

int

cost = 3

I Consider a state in which the reg ← . . . item is 2 cheaper than

the int ← . . . item.

I Transits to a state in which the reg ← . . . item is 4 cheaper

than the int ← . . . item.

I . . .

I Practical solution: If cost difference between any pair of

terminals is greater than a threshold, instruction set is

rejected.

I Typical instruction sets do not lead to divergence.

Relativization of states

I Consider a machine with only these two instructions involving

Fetch. Fetch

reg

reg

cost = 1

Fetch

int

int

cost = 3

I Consider a state in which the reg ← . . . item is 2 cheaper than

the int ← . . . item.

I Transits to a state in which the reg ← . . . item is 4 cheaper

than the int ← . . . item.

I . . .

I Practical solution: If cost difference between any pair of

terminals is greater than a threshold, instruction set is

rejected.

I Typical instruction sets do not lead to divergence.

Relativization of states

I Naively generated transition tables are very large.

I Typical CISC machine (1995 vintage) will generate 1000

states.

I Two states can be merged if the difference is not important in

all possible situtaions

I Two major optimizations

I State reduction by projecting out irrelevant items

I State reduction by triangle trimming.

Relativization of states

I Naively generated transition tables are very large.

I Typical CISC machine (1995 vintage) will generate 1000

states.

I Two states can be merged if the difference is not important in

all possible situtaions

I Two major optimizations

I State reduction by projecting out irrelevant items

I State reduction by triangle trimming.

Relativization of states

I Naively generated transition tables are very large.

I Typical CISC machine (1995 vintage) will generate 1000

states.

I Two states can be merged if the difference is not important in

all possible situtaions

I Two major optimizations

I State reduction by projecting out irrelevant items

I State reduction by triangle trimming.

Relativization of states

I Naively generated transition tables are very large.

I Typical CISC machine (1995 vintage) will generate 1000

states.

I Two states can be merged if the difference is not important in

all possible situtaions

I Two major optimizations

I State reduction by projecting out irrelevant items

I State reduction by triangle trimming.

Relativization of states

I Naively generated transition tables are very large.

I Typical CISC machine (1995 vintage) will generate 1000

states.

I Two states can be merged if the difference is not important in

all possible situtaions

I Two major optimizations

I State reduction by projecting out irrelevant items

I State reduction by triangle trimming.

Relativization of states

I Naively generated transition tables are very large.

I Typical CISC machine (1995 vintage) will generate 1000

states.

I Two states can be merged if the difference is not important in

all possible situtaions

I Two major optimizations

I State reduction by projecting out irrelevant items

I State reduction by triangle trimming.

State Reduction by Projecting out Irrelevant Items

I Consider a machine in which the only instructions involving

Plus are:
Plus

reg reg

Plus

reg int

I Also assume that there are two states:
goal <− reg, 0
reg <− Reg, 0
addr <− reg, 0

state 1: state 2:goal <− reg, 1
reg <− int, 1
addr <− reg, 1
int <− Int, 0

State Reduction by Projecting out Irrelevant Items

I Consider a machine in which the only instructions involving

Plus are:
Plus

reg reg

Plus

reg int

I Also assume that there are two states:
goal <− reg, 0
reg <− Reg, 0
addr <− reg, 0

state 1: state 2:goal <− reg, 1
reg <− int, 1
addr <− reg, 1
int <− Int, 0

State Reduction by Projecting out Irrelevant Items

I The normal transition table for Plus:
first argument

second argument

state 1 state 2Plus

state 1

state 2

State Reduction by Projecting out Irrelevant Items

I Since the first argument of Plus is a reg, we can project the

int ← . . . item out of both the states. The resulting transition

table for Plus is:

first argument

second argument

state 1 state 2Plus

state 1

state 2

state 1

State Reduction by Triangle Trimming

I Assume that a state s has two items nt ← . . . and nt’ ←

Under what conditions can we say that nt ← . . . is subsumed

by nt’ ← . . . and thus can be removed from s.

I Assume that the state has been used in the context of the

operator op at the argument position shown
 op

nt1 nt2 nt3

nti

*
nt (state s)

State Reduction by Triangle Trimming

I Assume that a state s has two items nt ← . . . and nt’ ←

Under what conditions can we say that nt ← . . . is subsumed

by nt’ ← . . . and thus can be removed from s.

I Assume that the state has been used in the context of the

operator op at the argument position shown
 op

nt1 nt2 nt3

nti

*
nt (state s)

State Reduction by Triangle Trimming

I The general situation under which nt ← . . . is subsumed by

nt’ ← . . . is:
 op

nt1 nt2 nt3
*

nt

nt2’ nt3’

* * *nt’

nt1’

 op

nti

ntj

*
*
(s)

I The cost of the rule nti ← . . . and the black chain reductions

should be less than the rule ntj ← . . . and the red chain

reductions.

I Further this should be true in all contexts in which s can be

used.

State Reduction by Triangle Trimming

I The general situation under which nt ← . . . is subsumed by

nt’ ← . . . is:
 op

nt1 nt2 nt3
*

nt

nt2’ nt3’

* * *nt’

nt1’

 op

nti

ntj

*
*
(s)

I The cost of the rule nti ← . . . and the black chain reductions

should be less than the rule ntj ← . . . and the red chain

reductions.

I Further this should be true in all contexts in which s can be

used.

State Reduction by Triangle Trimming

I The general situation under which nt ← . . . is subsumed by

nt’ ← . . . is:
 op

nt1 nt2 nt3
*

nt

nt2’ nt3’

* * *nt’

nt1’

 op

nti

ntj

*
*
(s)

I The cost of the rule nti ← . . . and the black chain reductions

should be less than the rule ntj ← . . . and the red chain

reductions.

I Further this should be true in all contexts in which s can be

used.

BURG – A Code Generation Tool

I Bottom Up Rewriting based code Generator

I Sample BURG input.

traverse tree
macros to

%{
 #define NODEPTR_TYPE treepointer
 #define OP_LABEL(p) ((p)−>op)
 #define LEFT_CHILD(p) ((p) −> left)
 #define RIGHT_CHILD(p) ((p) −> right)
 #define STATE_LABEL(p) ((p) −> state_label)
%}
 %start goal

 %term Mul=5 Plus=6
 %term Assign=1 Constant=2 Fetch=3 Four=4

 %%
 con: Constant = 1 (0);
 con: Four = 2 (0);
 addr: con = 3 (0);
 addr: Plus(con, reg) = 4 (0);
 addr: Plus(con,Mul(Four,reg)) = 5 (0);
 reg: Fetch(addr) = 6 (1);
 reg: Assign(addr,reg) = 7 (1);
 goal: reg = 8 (0);

BURG’s name for node type user’s name for node type

cost rule number

terminals

rule

non−terminals

pattern

BURG – A Code Generation Tool

I Bottom Up Rewriting based code Generator

I Sample BURG input.

traverse tree
macros to

%{
 #define NODEPTR_TYPE treepointer
 #define OP_LABEL(p) ((p)−>op)
 #define LEFT_CHILD(p) ((p) −> left)
 #define RIGHT_CHILD(p) ((p) −> right)
 #define STATE_LABEL(p) ((p) −> state_label)
%}
 %start goal

 %term Mul=5 Plus=6
 %term Assign=1 Constant=2 Fetch=3 Four=4

 %%
 con: Constant = 1 (0);
 con: Four = 2 (0);
 addr: con = 3 (0);
 addr: Plus(con, reg) = 4 (0);
 addr: Plus(con,Mul(Four,reg)) = 5 (0);
 reg: Fetch(addr) = 6 (1);
 reg: Assign(addr,reg) = 7 (1);
 goal: reg = 8 (0);

BURG’s name for node type user’s name for node type

cost rule number

terminals

rule

non−terminals

pattern

BURG – A Code Generation Tool

I Two traversals over the subject tree.

I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Two traversals over the subject tree.
I Labeling traversal.

I Done entirely by generated function

burg label(NODEPTR TYPE p).

I Labels the subject tree with states (represented by integers).

I Rule selection traversal.

I Done by a wrapper function

reduce(NODEPTR TYPE p, int goalInt)

written by user around BURG generated functions.

I Starts with the root of the subject tree and the non-terminal

goal.

I At each node selects a rule for evaluating the node.

I Passes control back to user function with an integer

identifying the rule. Actions corresponding to the rule to be

managed by the user.

BURG – A Code Generation Tool

I Here is an outline of a code-generator produced

with the help of BURG. Constructs in red are BURG generated.

 burg_kids(p, ruleno, kids);
 for (i = 0; nts[i]; i++)
 reduce(kids[i], nts[i]);
}

parse(NODEPTR_TYPE p) {

 reduce(p, 1) /* and reduce it, goal = 1*/
}

reduce(NODEPTR_TYPE p, int goalint) {

 NODEPTR_TYPE kids[10];
 int i;

 burg_label(p) /* label the tree */

 short *nts = burg_nts[ruleno] ;

 /* ... do something with this node... */

/* process the children of this node */

 int ruleno = burg_rule(STATE_LABEL(p), goalint);

