Code Generation by Tree Walking

Amey Karkare
karkare@cse.iitk.ac.in

April 10, 2019

Code Generation by Tree Walking

- Pushes dynamic programming to a pre-processing stage prior to code-generation time.

Code Generation by Tree Walking

- Pushes dynamic programming to a pre-processing stage prior to code-generation time.
- Simplifies dynamic programming effort by assuming unbounded number of registers.

Code Generation by Tree Walking

- Pushes dynamic programming to a pre-processing stage prior to code-generation time.
- Simplifies dynamic programming effort by assuming unbounded number of registers.
- Only cases taken into account are different patterns matching a node.

Code Generation by Tree Walking

- Pushes dynamic programming to a pre-processing stage prior to code-generation time.
- Simplifies dynamic programming effort by assuming unbounded number of registers.
- Only cases taken into account are different patterns matching a node.
- Normalization of costs

Code Generation by Tree Walking - Example

- An example expression tree and an example machine:

Code Generation by Tree Walking - Example

- The tree can be covered in more than one ways

Cost $=7$

Code Generation by Tree Walking - Example

- The tree can be covered in more than one ways

Cost $=7$

- We are finally interested in the least cost tree.

Code Generation by Tree Walking - Example

- The tree can be covered in more than one ways

Cost $=6$

Cost $=7$

- We are finally interested in the least cost tree.
- We also want to do some pre-processing before we get any tree,

Code Generation by Tree Walking - Example

- How is this done? Given a tree,

Code Generation by Tree Walking - Example

- How is this done? Given a tree,
- traverse the tree bottom up. With the help of a transition table, annotate each node of the tree with a state. state 5: reg <- Fetch(addr), 6 goal <- reg, 6 addr <- reg, 6
state 4: reg <- Fetch(addr), 4 goal <- reg, 4 addr <- reg, 4
state 3: reg <- Plus(reg, reg), 2
goal <- reg, 2
addr <- reg, 2
state 1: reg <- Reg, 0 Reg goal <- reg, 0 addr <- reg, 0

Code Generation by Tree Walking

- State: Gives the minimum cost of evaluating a node in the expression tree to different non-terminals.

Code Generation by Tree Walking

- State: Gives the minimum cost of evaluating a node in the expression tree to different non-terminals.
- Transition table: Gives

Code Generation by Tree Walking

- State: Gives the minimum cost of evaluating a node in the expression tree to different non-terminals.
- Transition table: Gives
- state corresponding to leaf nodes (0-ary terminals).

Code Generation by Tree Walking

- State: Gives the minimum cost of evaluating a node in the expression tree to different non-terminals.
- Transition table: Gives
- state corresponding to leaf nodes (0-ary terminals).
- given the states of children, gives state of interior nodes (n-ary terminals).

Code Generation by Tree Walking - Example

- A second top-down pass determines the instructions to be used at each node assuming that the root is to be evaluated in goal.

Precomputing the Transition Table

- For 0-ary terminals

Precomputing the Transition Table

- For 0-ary terminals
- Find least cost covering rules. A covering rule can cover the terminal with its pattern.

Precomputing the Transition Table

- For 0-ary terminals
- Find least cost covering rules. A covering rule can cover the terminal with its pattern.
- Find least cost chain rules. A chain rule is of the form nonterminal \leftarrow nonterminal.

Int goal <- reg, 1 -- chain rule
reg <- int, 1 -- chain rule
int <- Int, $0 \quad-$ - covering rule
addr <- reg, 1 -- chain rule

Precomputing the Transition Table

- For 0-ary terminals
- Find least cost covering rules. A covering rule can cover the terminal with its pattern.
- Find least cost chain rules. A chain rule is of the form nonterminal \leftarrow nonterminal.

Int goal <- reg, 1 -- chain rule
reg <- int, 1 -- chain rule int <- Int, 0 -- covering rule addr <- reg, 1 -- chain rule

- Cost of reducing Int to goal is
cost of reducing Int to int (0) +
cost of reducing int to reg (1) +
cost of reducing reg to goal (0) +

Precomputing the Transition Table

- n -ary terminals

Precomputing the Transition Table

- n -ary terminals
- If both children of Plus are in state 2 , in which state would Plus be?

Precomputing the Transition Table

- n-ary terminals
- If both children of Plus are in state 2, in which state would Plus be?
- The rule reg \leftarrow Plus(reg, reg) gives

$$
\begin{aligned}
& \text { goal <- reg, } 2 \\
& \text { reg <- Plus(reg, reg), } 2
\end{aligned}
$$

Precomputing the Transition Table

- The rule reg \leftarrow Plus(reg, int) gives
goal <- reg, 3
reg <- Plus(reg, int), 3

Precomputing the Transition Table

- The rule reg \leftarrow Plus(reg, int) gives
goal <- reg, 3
reg <- Plus(reg, int), 3

- Conclusion: If the leaves of Plus are both in state 2 , then Plus will be in

$$
\begin{array}{ll}
\text { state 6: } & \text { goal <- reg, 2 } \\
& \text { reg <- Plus(reg, reg), 2 } \\
& \text { addr <- reg, 2 }
\end{array}
$$

Precomputing the Transition Table

- Similarly, we should also find the transitions for Plus on pairs (state1, state1), (state1, state2), (state2, state6)

Precomputing the Transition Table

- Similarly, we should also find the transitions for Plus on pairs (state1, state1), (state1, state2), (state2, state6)

Precomputing the Transition Table

- Similarly, we should also find the transitions for Plus on pairs (state1, state1), (state1, state2), (state2, state6)
- Will this process always terminate?

Precomputing the Transition Table

- Consider computation of the state at Fetch, with reg in the state shown.

```
Fetch
reg <- Plus(reg, reg), 0
goal <- reg, 0
addr <- reg, 0
```


Precomputing the Transition Table

- Consider computation of the state at Fetch, with reg in the state shown.

- Successive computation of the states for Fetch yield:
\(\left.$$
\begin{array}{rl}\text { Fetch } & \begin{array}{l}\text { reg <- Fetch(addr), } 2 \\
\text { goal <- reg, 2 }\end{array}
$$

addr <- reg, 2\end{array}\right\}\)| reg <- Plus(reg, reg), 0 |
| :--- |
| goal <- reg, 0 |
| |
| |
| |
| |
| addr <- reg, 0 |


```
reg <- Fetch( addr), 4
goal <- reg, 4
addr <- reg, 4
reg <- Plus(reg, reg), 2
goal <- reg, 2
addr <- reg, 2
```


Relativization of states

- The solution is to relativize the costs in a state with respect to the item with the cheapest cost

Relativization of states

- The solution is to relativize the costs in a state with respect to the item with the cheapest cost
- After relativization, the state on the left changes to the state on the right:
reg <- Plus(reg, reg), 2
goal <- reg, 2
addr <- reg, 2

```
reg <- Plus(reg, reg), 0
goal <- reg, 0
addr <- reg, 0
```


Relativization of states

- The solution is to relativize the costs in a state with respect to the item with the cheapest cost
- After relativization, the state on the left changes to the state on the right:
reg <- Plus(reg, reg), 2
goal <- reg, 2
addr <- reg, 2

```
reg <- Plus(reg, reg), 0
goal <- reg, 0
addr <- reg, 0
```

- Does this make the resulting transition table different? Obviously not.

Relativization of states

- The solution is to relativize the costs in a state with respect to the item with the cheapest cost
- After relativization, the state on the left changes to the state on the right:
reg <- Plus(reg, reg), 2
goal <- reg, 2
addr <- reg, 2

```
reg <- Plus(reg, reg), 0
goal <- reg, 0
addr <- reg, 0
```

- Does this make the resulting transition table different? Obviously not.
- Does this necessarily lead to a finite number of states?

Relativization of states

- Consider a machine with only these two instructions involving
Fetch.

int \longleftarrow Fetch
$\cos \mathrm{t}=1$
cost $=3$

Relativization of states

- Consider a machine with only these two instructions involving Fetch.

$$
\cos t=1
$$

$$
\cos t=3
$$

- Consider a state in which the reg $\leftarrow \ldots$ item is 2 cheaper than the int $\leftarrow \ldots$ item.

Relativization of states

- Consider a machine with only these two instructions involving Fetch.

$$
\cos t=1
$$

$$
\cos t=3
$$

- Consider a state in which the reg $\leftarrow \ldots$ item is 2 cheaper than the int $\leftarrow \ldots$ item.
- Transits to a state in which the reg $\leftarrow \ldots$ item is 4 cheaper than the int $\leftarrow \ldots$ item.

Relativization of states

- Consider a machine with only these two instructions involving Fetch.

$$
\cos t=1
$$

$$
\cos t=3
$$

- Consider a state in which the reg $\leftarrow \ldots$ item is 2 cheaper than the int $\leftarrow \ldots$ item.
- Transits to a state in which the reg $\leftarrow \ldots$ item is 4 cheaper than the int $\leftarrow \ldots$ item.

Relativization of states

- Consider a machine with only these two instructions involving Fetch.

$$
\operatorname{cost}=1
$$

$$
\operatorname{cost}=3
$$

- Consider a state in which the reg $\leftarrow \ldots$ item is 2 cheaper than the int $\leftarrow \ldots$ item.
- Transits to a state in which the reg $\leftarrow \ldots$ item is 4 cheaper than the int $\leftarrow \ldots$ item.
- Practical solution: If cost difference between any pair of terminals is greater than a threshold, instruction set is rejected.

Relativization of states

- Consider a machine with only these two instructions involving Fetch.

$$
\operatorname{cost}=1
$$

$$
\operatorname{cost}=3
$$

- Consider a state in which the reg $\leftarrow \ldots$ item is 2 cheaper than the int $\leftarrow \ldots$ item.
- Transits to a state in which the reg $\leftarrow \ldots$ item is 4 cheaper than the int $\leftarrow \ldots$ item.
- Practical solution: If cost difference between any pair of terminals is greater than a threshold, instruction set is rejected.
- Typical instruction sets do not lead to divergence.

Relativization of states

- Naively generated transition tables are very large.

Relativization of states

- Naively generated transition tables are very large.
- Typical CISC machine (1995 vintage) will generate 1000 states.

Relativization of states

- Naively generated transition tables are very large.
- Typical CISC machine (1995 vintage) will generate 1000 states.
- Two states can be merged if the difference is not important in all possible situtaions

Relativization of states

- Naively generated transition tables are very large.
- Typical CISC machine (1995 vintage) will generate 1000 states.
- Two states can be merged if the difference is not important in all possible situtaions
- Two major optimizations

Relativization of states

- Naively generated transition tables are very large.
- Typical CISC machine (1995 vintage) will generate 1000 states.
- Two states can be merged if the difference is not important in all possible situtaions
- Two major optimizations
- State reduction by projecting out irrelevant items

Relativization of states

- Naively generated transition tables are very large.
- Typical CISC machine (1995 vintage) will generate 1000 states.
- Two states can be merged if the difference is not important in all possible situtaions
- Two major optimizations
- State reduction by projecting out irrelevant items
- State reduction by triangle trimming.

State Reduction by Projecting out Irrelevant Items

- Consider a machine in which the only instructions involving Plus are:

State Reduction by Projecting out Irrelevant Items

- Consider a machine in which the only instructions involving Plus are:

- Also assume that there are two states:
state 1: goal <- reg, 0
reg <- Reg, 0
addr <- reg, 0

State Reduction by Projecting out Irrelevant Items

- The normal transition table for Plus:

first argument \longrightarrow | Plus | state 1 | state 2 |
| :---: | :---: | :---: |
| second argument | state 1 | |
| | state 2 | |
| | | |
| | | |
| | | |

State Reduction by Projecting out Irrelevant Items

- Since the first argument of Plus is a reg, we can project the int $\leftarrow \ldots$ item out of both the states. The resulting transition table for Plus is:

Plus

first argument

state 1
second argument state 1
state 2

State Reduction by Triangle Trimming

- Assume that a state s has two items $n t \leftarrow \ldots$ and $n t ' \leftarrow \ldots$. Under what conditions can we say that $n t \leftarrow \ldots$ is subsumed by $n t^{\prime} \leftarrow \ldots$ and thus can be removed from s .

State Reduction by Triangle Trimming

- Assume that a state s has two items $n t ~ \leftarrow \ldots$ and $n t ' \leftarrow \ldots$. Under what conditions can we say that $n t \leftarrow \ldots$ is subsumed by $\mathrm{nt}^{\prime} \leftarrow \ldots$ and thus can be removed from s .
- Assume that the state has been used in the context of the operator op at the argument position shown

State Reduction by Triangle Trimming

- The general situation under which $n t \leftarrow \ldots$ is subsumed by $n t ' \leftarrow \ldots$ is:

State Reduction by Triangle Trimming

- The general situation under which $n t \leftarrow \ldots$ is subsumed by $n n^{\prime} \leftarrow \ldots$ is:

- The cost of the rule nti $\leftarrow \ldots$ and the black chain reductions should be less than the rule $n t j \leftarrow \ldots$ and the red chain reductions.

State Reduction by Triangle Trimming

- The general situation under which $n t \leftarrow \ldots$ is subsumed by $n n^{\prime} \leftarrow \ldots$ is:

- The cost of the rule nti $\leftarrow \ldots$ and the black chain reductions should be less than the rule $n t j \leftarrow \ldots$ and the red chain reductions.
- Further this should be true in all contexts in which s can be used.

BURG - A Code Generation Tool

- Bottom Up Rewriting based code Generator

BURG - A Code Generation Tool

- Bottom Up Rewriting based code Generator
- Sample BURG input.

BURG - A Code Generation Tool

- Two traversals over the subject tree.

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.
- Done entirely by generated function burg_label (NODEPTR_TYPE p).

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.
- Done entirely by generated function burg_label (NODEPTR_TYPE p).
- Labels the subject tree with states (represented by integers).

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.
- Done entirely by generated function burg_label (NODEPTR_TYPE p).
- Labels the subject tree with states (represented by integers).
- Rule selection traversal.

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.
- Done entirely by generated function burg_label (NODEPTR_TYPE p).
- Labels the subject tree with states (represented by integers).
- Rule selection traversal.
- Done by a wrapper function
reduce(NODEPTR_TYPE p, int goalInt)
written by user around BURG generated functions.

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.
- Done entirely by generated function burg_label (NODEPTR_TYPE p).
- Labels the subject tree with states (represented by integers).
- Rule selection traversal.
- Done by a wrapper function
reduce(NODEPTR_TYPE p, int goalInt)
written by user around BURG generated functions.
- Starts with the root of the subject tree and the non-terminal goal.

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.
- Done entirely by generated function burg_label(NODEPTR_TYPE p).
- Labels the subject tree with states (represented by integers).
- Rule selection traversal.
- Done by a wrapper function
reduce(NODEPTR_TYPE p, int goalInt)
written by user around BURG generated functions.
- Starts with the root of the subject tree and the non-terminal goal.
- At each node selects a rule for evaluating the node.

BURG - A Code Generation Tool

- Two traversals over the subject tree.
- Labeling traversal.
- Done entirely by generated function burg_label (NODEPTR_TYPE p).
- Labels the subject tree with states (represented by integers).
- Rule selection traversal.
- Done by a wrapper function
reduce(NODEPTR_TYPE p, int goalInt)
written by user around BURG generated functions.
- Starts with the root of the subject tree and the non-terminal goal.
- At each node selects a rule for evaluating the node.
- Passes control back to user function with an integer identifying the rule. Actions corresponding to the rule to be managed by the user.

BURG - A Code Generation Tool

- Here is an outline of a code-generator produced with the help of BURG. Constructs in red are BURG generated. parse (NODEPTR_TYPE p) \{
burg_label(p) /* label the tree */
reduce ($\mathrm{p}, 1$) /* and reduce it, goal = 1*/
\}

```
reduce(NODEPTR_TYPE p, int goalint) {
    int ruleno = burg_rule(STATE_LABEL(p), goalint);
    short *nts = burg_nts[ruleno];
    NODEPTR_TYPE kids[10];
    int i;
    /* ... do something with this node... */
    /* process the children of this node */
    burg_kids(p, ruleno, kids);
    for (i = 0; nts[i]; i++)
        reduce(kids[i], nts[i]);
}
```

