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Characteristics of the Algorithm

◮ Considers expression trees.

◮ The target machine model is general enough to generate code

for a large class of machines.

◮ Represented as a tree, an instruction

◮ can have a root of any arity.

◮ can have as leaves registers or memory locations appearing in

any order.

◮ can be of of any height

◮ Does not use algebraic properties of operators.

◮ Generates optimal code, where, once again, the cost measure

is the number of instructions in the code.

◮ Complexity is linear in the size of the expression tree.
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Expression Trees Defined

◮ Let Σ be a countable set of operands, and Θ be a finite set of

operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.

2. If T1, T2, . . . , Tk are expression trees whose leaves all have

distinct labels and θ is a k-ary operator in Θ, then

Θ

T T
1 2 kT

is an expression tree.
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Example

◮ An example of an expression tree is

+
*

+

ind

addr_a

i b

*

4 i

◮ Notation: If T is an expression tree, and S is a subtree of T ,

then T/S is the the tree obtained by replacing S in T by a

single leaf labeled by a distinct name from Σ.
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The Machine Model

1. The machine has n general purpose registers (no special

registers).

2. Countable sequence of memory locations.

3. Instructions are of the form:

a. r ← E , r is a register and E is an expression tree whose

operators are from Θ and operands are registers, memory

locations or constants. Further, r should be one of the register

names occurring (if any) in E .

b. m← r , a store instruction.



Example Of A Machine

+

{MOV r, m}

{MOV  m(r), r}

{op r , r }12

{MOV  m, r}
{MOV  #c, r}r c

r m

m r

r ind

r m
r op

r r

1

1 2
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VALUE OF A PROGRAM

◮ We need to define the value v(P) computed by a program P .

1. We want to specify what it means to say that a program P

computes an expression tree T . This is when the value of the

program v(P) is the same as T .

2. We also want to talk of equivalence of two programs P1 and

P2. This is true when v(P1) = v(P2).
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VALUE OF A PROGRAM

◮ What is the value of a program P = I1, I2, . . . , Iq?

◮ It is a tree, defined as follows:

◮ First define vt(z), the value of a memory location or register z

after the execution of the instruction It .

a. Initially v0(z) is z if z is a memory location, else it is undefined.

b. If It is r ← E , then vt(r) is the tree obtained by taking the

tree representing E , and substituting for each leaf l the value

of vt−1(l).

c. If It is m← r , then vt(m) is vt−1(r).

d. Otherwise vt(z) = vt−1(z).

◮ If Iq is z ← E , then the value of P is vq(z).
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EXAMPLE

◮ For the program:

r1 ← b

r1 ← r1 + c

r2 ← a

r2 ← r2 ∗ ind(r1)

◮ the values of r1, r2, a, b and c at different time instants are:

1 2
before 1

after 1

after 2

after 3

after 4

+

+

+

+

*

U U a b

b U a b

b c

U a b

a a b

b c

b c a ind

a b

b c

c

c

c

c

c

r r a b c



EXAMPLE

◮ For the program:

r1 ← b

r1 ← r1 + c

r2 ← a

r2 ← r2 ∗ ind(r1)

◮ The values of of the program is

+

*

a ind

b c
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◮ NOTE: We shall assume that our programs do not have any

useless instructions.
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SCOPE OF INSTRUCTIONS

◮ The scope of an instruction It in a program P = I1I2 . . . Iq is

the sequence of instructions It+1, . . . , Is , where s is the largest

index such that

a. The register or memory location defined by It is used by Is , and

b. This register/memory location is not redefined by the

instructions between It and Is .

◮ The relation between Is and It is expressed by saying that Is is

the last use of It , and is denoted by s = Up(t).
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REARRANGABILITY OF PROGRAMS

◮ We shall show that each program can be rearranged to obtain

an equivalent program (of the same length) in strong normal

form.

◮ Why is this result important? This is because our algorithm

considers programs which are in strong normal form only. The

above result assures us that by doing so, we shall not miss out

an optimal solution.

◮ To show the above result, we shall have to consider the kinds

of rearrangements which retain program equivalence.
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Rearrangement Theorem

◮ Let P = I1, I2, . . . , Iq be a program which computes an

expression tree.

◮ Let π be a permutation on {1 . . . q } with π(q) = q.

◮ π induces a rearranged program Q = J1, J2, . . . , Jq with Ii in

P becoming J
π(i) in Q.

◮ Then Q is equivalent to P if π(UP(t)) = UQ(π(t)).
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◮ The rearrangement theorem merely states that a

rearrangement retains program equivalence, if any variable

defined by an instruction in the original program is last used

by the same instructions in both the original and rearranged

program.

◮ To see why the statement of the theorem is true, reason as

follows.
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Rearrangement Theorem: Notes

a. P is equivalent to Q, if the operands used by the last

instruction Iq(also Jq) have the same value in P and Q.

b. Consider any operand in Iq, say z . By the rearrangement

theorem, This must have been defined by the same instruction

(though in different positions say It and J
π(t)) in P and Q. So

z in Iq and Jq have the same value, if the operands used by It

and J
π(t) have the same value in P and Q.

c. Repeat this argument, till you come across an instruction with

all constants on the right hand side.



Rearrangement Theorem: Notes

P Q

z

I J

It

r r
q qz..

.....

.. z....

z .....

:

: :

J tπ( )
:
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◮ The width of a program is a measure of the minimum number

of registers required to execute the program.

◮ Formally, if P is a program, then the width of an instruction It

is the number of distinct j , 1 ≤ j ≤ t, with UP(j) > t, and Ij

not a store instruction.

r1 ←

r2 ←

It : Width = 2

← r1

← r2

◮ The width of a program P is the maximum width over all

instructions in P .
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WIDTH

◮ A program of width w (but possibly using more than w

registers) can be rearranged into an equivalent program using

exactly w registers.

◮ EXAMPLE:

r1 ← a

r2 ← b

r1 ← r1 + r2

r3 ← c

r3 ← r3 + d

r1 ← r1 ∗ r3

r1 ← a

r2 ← b

r1 ← r1 + r2

r2 ← c

r2 ← r2 + d

r1 ← r1 ∗ r2
◮ In the example above, the first program has width 2 but uses

3 registers. By suitable renaming, the number of registers in

the second program has been brought down to 2.



LEMMA

Let P be a program of width w , and let R be a set of w distinct

registers. Then, by renaming the registers used by P , we may

construct an equivalent program P ′, with the same length as P ,

which uses only registers in R .
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PROOF OUTLINE

1. The relabeling algorithm should be consistent, that is, when a

variable which is defined is relabeled, its use should also be

relabeled.

2. Assume that we are renaming the registers in the instructions

in order starting from the first instruction. At which points

will there be a question of a choice of registers?

a. There is no question of choice for the registers on the RHS of

an instruction. These had been decided at the point of their

definitions (consistent relabeling).

b. There is no question of choice for the register r in the

instruction r ← E , where E has some register operands. r has

to be one of the registers occurring in E .

c. The only instructions involving a choice of registers are

instructions of the form r ← E , where E has no register

operands.
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PROOF OUTLINE

3. Since the width of P is w , the width of the instruction just

before r ← E is at most w − 1. (Why?)

4. Therefore a register can always be found for r in the

rearranged program P ′.
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CONTIGUITY AND STRONG CONTIGUITY

◮ Can one decrease the width of a program?

◮ For storeless programs, there is an arrangement which has

minimum width.

◮ EXAMPLE: All the three programs P1, P2, and P3 compute

the expression tree shown below:

*

+ /

+ *

a b c d

e f



P1 P2 P3

r1 ← a r1 ← a r1 ← a

r2 ← b r2 ← b r2 ← b

r3 ← c r3 ← c r1 ← r1 + r2

r4 ← d r4 ← d r2 ← c

r5 ← e r1 ← r1 + r2 r3 ← d

r6 ← f r3 ← r3 ∗ r4 r2 ← r2 ∗ r3

r5 ← r5/r6 r1 ← r1 + r3 r1 ← r1 + r2

r3 ← r3 ∗ r4 r2 ← e r2 ← e

r1 ← r1 + r2 r3 ← f r3 ← f

r1 ← r1 + r3 r2 ← r2/r3 r2 ← r2/r3

r1 ← r1 ∗ r5 r1 ← r1 ∗ r2 r1 ← r1 ∗ r2



P1 P2 P3

r1 ← a r1 ← a r1 ← a

r2 ← b r2 ← b r2 ← b

r3 ← c r3 ← c r1 ← r1 + r2

r4 ← d r4 ← d r2 ← c

r5 ← e r1 ← r1 + r2 r3 ← d

r6 ← f r3 ← r3 ∗ r4 r2 ← r2 ∗ r3

r5 ← r5/r6 r1 ← r1 + r3 r1 ← r1 + r2

r3 ← r3 ∗ r4 r2 ← e r2 ← e

r1 ← r1 + r2 r3 ← f r3 ← f

r1 ← r1 + r3 r2 ← r2/r3 r2 ← r2/r3

r1 ← r1 ∗ r5 r1 ← r1 ∗ r2 r1 ← r1 ∗ r2

The program P2 has a width less than P1, whereas P3 has the

least width of all three programs. P2 is a contiguous program

whereas P3 is a strongly contiguous program.
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op

A

T

1 2 k

k21
T T

A A....



CONTIGUITY AND STRONG CONTIGUITY

THEOREM: Let P = I1, I2, . . . , Iq be a program of width w with

no stores. Iq uses k registers whose values at time q − 1 are

A1, . . . ,Ak . Then there exists an equivalent program

Q = J1, J2, . . . , Jq, and a permutation π on {1, . . . , k} such that

i. Q has width at most w .

ii. Q can be written as P1 . . .PkJq where v(Pi ) = A
π(i) for

1 ≤ i ≤ k , and the width of Pi , by itself, is at most w − i + 1.
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Consider an evaluation of the expression tree:.

op

A

T

1 2 k

k21
T T

A A....

This tree can be evaluated in the order mentioned below:



CONTIGUOUS AND STRONG CONTIGUOUS

EVALUATION

1. Q computes the entire subtree T1 first using P1. In the

process all the w registers could be used.

2. After computing T1 all registers except one are freed.

Therefore T2 is free to use w − 1 registers and its width is at

most w − 1. T2 is computed by P2.

3. T3 is similarly computed by P3, whose width is w − 2.

Of course A1, . . . ,A3 need not necessarily be computed in this

order. This is what brings the permutation π in the statement of

the theorem.



CONTIGUOUS AND STRONG CONTIGUOUS

EVALUATION

A program in the form P1 . . .PkJq is said to be in contiguous form.

If each of the Pi s is, in turn, contiguous, then the program is said

to be in strong contiguous form.

THEOREM: Every program without stores can be transformed into

strongly contiguous form.

PROOF OUTLINE: Apply the technique in the previous theorem

recursively to each of the Pi s.



AHO-JOHNSON ALGORITHM

STRONG NORMAL FORM PROGRAMS

A program requires stores if there are not enough registers to hold

intermediate values or if an instruction requires some of its

operands to be in memory locations. Such programs can also be

cast in a certain form called strong normal form.
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Consider the following evaluation of tree shown, in which the

marked nodes require stores.

op

T
1

T2

T
3

1. Compute T1 using program P1. Store the value in memory

location m1.

2. Compute T2 using program P2. Store the value in memory

location m2.

3. Compute T3 using program P3. Store the value in memory

location m3.

4. Compute the tree shown below using a storeless program P4.
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op

m1 m2

m3

A program in such a form is called a normal form program.
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Let P = I1 . . . Iq be a machine program. We say P is in normal

form, if it can be written as P = P1J1P2J2 . . .Ps−1Js−1Ps , such

that

1. Each Ji is a store instruction and no Pi contains a store

instruction.

2. No registers are active immediately after a store instruction.

Further, P is in strong normal form, if each Pi is strongly

contiguous.
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2. Identify the instructions between I1 and If−1 which do not

contribute towards the computation of the value of If .

3. Shift these instructions, in order, after If .

4. We now have a program P1J1Q, where P1 is storeless, J1 is

the first store instruction (previously denoted by If ), and no

registers are active after J1.
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LEMMA: Let P be an optimal program which computes an

expression tree. Then there exists a permutation of P , which

computes the same value and is in normal form.

PROOF OUTLINE:

1. Let If be the first store instruction of P .

2. Identify the instructions between I1 and If−1 which do not

contribute towards the computation of the value of If .

3. Shift these instructions, in order, after If .

4. We now have a program P1J1Q, where P1 is storeless, J1 is

the first store instruction (previously denoted by If ), and no

registers are active after J1.

5. Repeat this for the program Q.
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THEOREM: Let P be an optimal program of width w . We can
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THEOREM: Let P be an optimal program of width w . We can

transform P into an equivalent program Q such that:

1. P and Q have the same length.

2. Q has width at most w , and

3. Q is in strong normal form.

PROOF OUTLINE:

1. Given a program, first apply the previous lemma to get a

program in normal form.
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THEOREM: Let P be an optimal program of width w . We can

transform P into an equivalent program Q such that:

1. P and Q have the same length.

2. Q has width at most w , and

3. Q is in strong normal form.

PROOF OUTLINE:

1. Given a program, first apply the previous lemma to get a

program in normal form.

2. Convert each Pi to strongly contiguous form.

3. None of the above transformations increase the width or

length of the program.
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specify under what conditions is a program in strong normal form

optimal. This will allow us later to prove the optimality of our

code generation algorithm.
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number of instructions for this purpose.
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OPTIMALITY CONDITION

Not all programs in strong normal form are optimal. We need to

specify under what conditions is a program in strong normal form

optimal. This will allow us later to prove the optimality of our

code generation algorithm.

1. If an expression tree can be evaluated without stores, then the

optimal program will do so. Moreover it will use minimal

number of instructions for this purpose.

2. Now assume that a program necessarily requires stores at

certain points of the tree, as shown next. For simplicity,

assume that this is the only store required to evaluate the tree.
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OPTIMALITY CONDITION

T

S

3. then the optimal program should

a. Evaluate S (optimally, by condition 1).

b. Store the value in a memory location.

c. Evaluate the rest of the (storeless) tree T/S (once again

optimally, due to condition 1).
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Pass 1 Computes an array of costs for each node. This helps to select

an instruction to evaluate the node, and the evaluation order

to evaluate the subtrees of the node.
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THE ALGORITHM

The algorithm makes three passes over the expression tree.

Pass 1 Computes an array of costs for each node. This helps to select

an instruction to evaluate the node, and the evaluation order

to evaluate the subtrees of the node.

Pass 2 Identifies the subtrees which must be evaluated in memory

locations.

Pass 3 Actually generates code.
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used to evaluate the node.
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◮ An instruction covers a node in an expression tree, if it can be

used to evaluate the node.

◮ The algorithm which decides whether an instruction covers a

node also provides a related information

◮ which of the subtrees of the node should be evaluated in

registers (regset)

◮ which should be evaluated in memory locations (memset).
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EXAMPLE
+

a ind

*

4 i

Instruction: +

r  m

+

r ind

r r

2

1

1

regset ={a,   }
memset = {  }

regset ={a}

*

+

r  r 

r

1

1

2

regset ={a,      }
memset = {  }

ind 
memset = {     }ind 

4
*

4 i

4 i
*

i

r
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function cover(E , S);

(* decides whether z ← E covers the expression tree S . If so, then

regset and memset will contain the subtrees of S to be evaluated

in register and memory *)
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ALGORITHM FOR COVER

function cover(E , S);

(* decides whether z ← E covers the expression tree S . If so, then

regset and memset will contain the subtrees of S to be evaluated

in register and memory *)

1. If E is a single register node, add S to regset and return true.

2. If E is a single memory node, add S to memset and return

true.



ALGORITHM FOR COVER

3. If E has the form

E  E 1 s

θ

E 2
...

then, if the root of S is not θ, return false. Else, write S as

S  S 1 s

θ

S 2
...

For all i from 1 to s do cover(Ei ,Si ). Return true, only if all

invocations return true.
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AHO-JOHNSON ALGORITHM

Calculates an array of costs Cj(S) for every subtree S of T , whose

meaning is to be interpreted as follows:

◮ C0(S) : cost of evaluating S in a memory location.

◮ Cj(S), j 6= 0 is the minimum cost of evaluating S using j

registers.



EXAMPLE

Consider a machine with the instructions shown below.

+

{MOV r, m}

{MOV  m(r), r}

{op r , r }12

{MOV  m, r}
{MOV  #c, r}r c

r m

m r

r ind

r m
r op

r r

1

1 2

Note that there are no instructions of the form op m, r OR

op r , m.
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Cost computation with 2 registers for the expression tree

+
*

+

ind

addr_a

i b

*

4 i

Assume that 4, being a literal, does not reside in memory.
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+

*

+

*

ind

addr_a

i b

4 i

11

1111

1

11

1 1 11

2

2

00

0

6

6 7 5

7 6

1 2

4 5 3

4 5 3

2 registers

1 register
0 register

0
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+

*

+

*

ind

addr_a

i b

4 i

11

1111

1

11

1 1 11

2

2

00

0

6

6 7 5

7 6

1 2

4 5 3

4 5 3

2 registers

1 register
0 register

0

In this example, we assume that 4, being a literal, does not reside

in memory. The circles around the costs indicate the choices at the

children which resulted in the circled cost of the parent. The next

slide explains how to calculate the cost at each node.
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Consider the subtree 4 ∗ i . For the leaf labeled 4,

1. C [1] = 1, load the constant into a register using the MOVE c ,

m instruction.

2. C [2] = 1, the extra register does not help.

3. C [0] = 2, load into a register, and then store in memory

location.

For the leaf labeled i ,

1. C [1] = 1, load the variable into a register.

2. C [2] = 1,

3. C [0] = 0, do nothing, i is already in a memory location.
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For the node labeled *,

1. C [2] = 3, evaluate each of the operands in registers and use

the op r1, r2 instruction.

2. C [0] = 4, evaluate the node using two registers as above and

store in a memory location.

3. C [1] = 5, notice that our machine has no op m, r instruction.

So we can use two registers to perform the operation and

store the result in a memory location releasing the registers.

When we want to use the result, we can load it in a register.

The cost in this case is C [0] + 1 = 5.
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0. Let n denote the max number of available registers. Set

Cj(s) =∞ for all subtrees S of T and for all j , 0 ≤ j ≤ n.

Visit the tree in postorder. For each node S in the tree do
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0. Let n denote the max number of available registers. Set

Cj(s) =∞ for all subtrees S of T and for all j , 0 ≤ j ≤ n.

Visit the tree in postorder. For each node S in the tree do

steps 1–3.

1. If S is a leaf (variable), set C0(S) = 0.

2. Consider each instruction r ← E which covers S . For each

instruction obtain the regset {S1, . . . , Sk} and memset

{T1, . . . ,Tl}. Then for each permutation π of {1, . . . , k} and

for all j , k ≤ j ≤ n, compute

Cj(S) = min(Cj(S),Σ
k
i=1Cj−i+1(Sπ(i)) + Σl

i=1C0(Ti ) + 1)

Remember the π that gives minimum Cj(S).

3. Set C0(S) = min(C0(S),Cn(S) + 1), and

Cj(S) = min(Cj(S),C0(S) + 1).
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1. In step 2,

◮ Σk
i=1Cj−i+1(Sπ(i)) is the cost of computing the subtrees Si in

registers,

◮ Σl
i=1C0(Ti ) is the cost of computing the subtrees Ti in

memory,

◮ 1 is the cost of the instruction at the root.

2. C0(S) = min(C0(S),Cn(S) + 1) is the cost of evaluating a

node in memory location by first using n registers and then

storing it.
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3. Cj(S) = min(Cj(S),C0(S) + 1) is the cost of evaluating a

node by first evaluating it in a memory location and then

loading it.

4. The algorithm also records at each node, the minimum cost,

and

a. The instruction which resulted in the minimum cost.

b. The permutation which resulted in the minimum cost.
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◮ This pass marks the nodes which have to be evaluated into

memory.

◮ The algorithm is initially invoked as mark(T , n), where T is

the given expression tree and n the number of registers

supported by the machine.

◮ It returns a sequence of nodes x1, . . . , xs−1, where x1, . . . , xs−1

represent the nodes to be evaluated in memory. For purely

technical reasons, after mark returns, xs is set to T itself.



function mark(S , j)

1. Let z ← E be the optimal instruction associated with Cj(S),

and π be the optimal permutation. Invoke cover(E , S) to

obtain regset {S1, . . . , Sk} and memset {T1, . . . ,Tl} of S .

2. For all i from 1 to k do mark(S
π(i), j − i + 1).

3. For all i from 1 to l do mark(Ti , n).

4. If j is n and the instruction z ← E is a store, increment s and

set xs to the root of S .

5. Return.
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ind

addr_a

i b

4 i
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1111

1

11

1 1 11

2

0

2

00

0

6

6 7 5

7 6

1 2

4 5 3

4 5 3

2

2

2 1

1

1

mark(+1, 2)
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mark(4, 2)
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ind

addr_a

i b

4 i
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1
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2

0

2
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0

6
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7 6

1 2

4 5 3

4 5 3

2

2

2 1

1

1

mark(+1, 2)

mark(∗1, 2)

mark(i1, 2)

mark(b1, 1)

mark(ind , 1)

mark(+2, 1)

mark(addra, 1)

mark(∗2, 2) //the covering

//instruction is m← . . .

mark(4, 2)

mark(i2, 1)

x1 = ∗2 // ∗2 needs to be stored
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◮ The algorithm generates code for the subtrees rooted at

x1, . . . xs , in that order.

◮ After generating code for xi , the algorithm replaces the node

with a distinct memory location mi .

◮ The algorithm uses the following unspecified routines

◮ alloc {*allocates a register*}

◮ free {*frees a register*}



AHO-JOHNSON ALGORITHM

The main program is:

1. Set i = 1 and invoke code(xi , n). Let α be the register

returned. Issue the instruction mi ← α, invoke free(α), and

rewrite xi to represent mi . Repeat this step for

i = 2, . . . , s − 1.
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The main program is:

1. Set i = 1 and invoke code(xi , n). Let α be the register

returned. Issue the instruction mi ← α, invoke free(α), and

rewrite xi to represent mi . Repeat this step for

i = 2, . . . , s − 1.

2. Invoke code(xs , n).

This uses the function code(S , j) which generates code for the tree

S using j registers, and also returns the register in which the code

was evaluated. This is described in the following slide.
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1. Let z ← E be the optimal instruction for Cj(S), and π be the

optimal permutation. Invoke cover(E , S) to obtain the regset

{S1, . . . , Sk}.
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function code(S , j)

1. Let z ← E be the optimal instruction for Cj(S), and π be the

optimal permutation. Invoke cover(E , S) to obtain the regset

{S1, . . . , Sk}.

2. For i = 1 to k , do code(S
π(i), j − i + 1). Let α1, . . . , αk be

the registers returned.

3. If k = 0, call alloc to obtain an unused register to return.

4. Issue α← E with α1, . . . αk substituted for the registers of E .

Memory locations of E are substituted by some mi or leaves

of T .

5. Call free on α1, . . . αk except α. Return α as the register for

code(S , j).
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EXAMPLE: For the expression tree shown below, the code

generated will be:
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generated will be:
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EXAMPLE: For the expression tree shown below, the code

generated will be:

+

*

+

*

ind

addr_a

i b

4 i

11

1111

1

11

1 1 11

2

0

2

00

0

6

6 7 5

7 6

1 2

4 5 3

4 5 3

2

2

2 1

1

1

MOVE #4, r1 (evaluate 4 ∗ i first, since

MOVE i , r2 this node has to be stored)

MUL r2, r1

MOVE r1, m1

MOVE i , r1 (evaluate i ∗ b next, since this

MOVE b, r2 requires 2 registers)

MUL r2, r1

MOVE #addr a, r1

MOVE m1(r1), r1 (evaluate the ind node)

ADD r1, r2 (evaluate the root)



PROOF OF OPTIMALITY

THEOREM: Cj(T ) is the minimal cost over all strong normal form

programs P1J1 . . .Ps−1Js−1Ps which compute T such that the

width of Ps is at most j .

SS

T1

21 T2
store

store

T

◮ Consider an optimal program P1J1P2J2PI in strong normal form.

◮ Now P is a strongly contiguous program which evaluates in registers

values required by I . So P might be written as a sequence of

contiguous programs, say P3P4.

◮ For instance, P3 could be the program computing the portion of S1

in figure the figure which is not shaded, using j registers, and P4

could be computing S2 using j − 1 registers. Also P1J1 and P2J2

must be computing the shaded subtrees T1 and T2.
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Now let us calculate the cost of this program.

◮ P1J1P3 is a program in strong normal form, evaluating the

subtree S1. Since the width of P3 is j , as induction hypothesis

we can assume that the cost of P1J1P3 is atleast Cj(S1).

◮ P4 is also a program in strong normal form, evaluating S2 and

the width of P4 is j − 1. Once again, as induction hypothesis,

we can assume that the cost of P4 is atleast Cj−1(S2).

◮ Finally P2J2 is a program which computes the subtree T2 and

stores it in memory. The cost of this is no more than C0(T2).

Therefore the cost of this optimal program is

1 + Cj(S1) + Cj−1(S2) + C0(T2). The program generated by our

algorithm is no costlier than this (Pass 1, step 2), and is therefore

optimal.
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COMPLEXITY OF THE ALGORITHM

1. The time required by Pass 1 is an, where a is a constant

depending

◮ linearly on the size of the instruction set

◮ exponentially on the arity of the machine, and

◮ linearly on the number of registers in the machine

and n is the number of nodes in the expression tree.

2. Time required by Passes 2 and 3 is proportional to n

Therefore the complexity of the algorithm is O(n).


