
Code Generation: Sethi Ullman Algorithm

Amey Karkare

karkare@cse.iitk.ac.in

March 28, 2019

karkare@cse.iitk.ac.in


Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).

I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Sethi-Ullman Algorithm – Introduction

I Generates code for expression trees (not dags).
I Target machine model is simple. Has

I a load instruction,

I a store instruction, and

I binary operations involving either a register and a memory, or

two registers.

I Does not use algebraic properties of operators. If a ∗ b has to

be evaluated using r1 ← r1 ∗ r2, then a and b have to be

necessarily loaded in r1 and r2 respectively.

I Extensions to take into account algebraic properties of

operators.

I Generates optimal code – i.e. code with least number of

instructions. There may be other notions of optimality.

I Complexity is linear in the size of the expression tree.

Reasonably efficient.



Expression Trees

I Here is the expression a/(b + c)− c ∗ (d + e) represented as a

tree:

/ *

+ +a

b c

c

d e

_



Expression Trees

I Here is the expression a/(b + c)− c ∗ (d + e) represented as a

tree:

/ *

+ +a

b c

c

d e

_



Expression Trees

I Here is the expression a/(b + c)− c ∗ (d + e) represented as a

tree:

/ *

+ +a

b c

c

d e

_



Expression Trees

I We have not identified common sub-expressions; else we

would have a directed acyclic graph (DAG):

/ *

+ +a

b c d e

_



Expression Trees

I Let Σ be a countable set of variable names, and Θ be a finite

set of binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.

2. If T1 and T2 are expression trees and θ is a operator in Θ,

then
T T

1 2

θ

is an expression tree.

I In this example

Σ = {a, b, c , d , e, . . . }, and Θ = {+, −, ∗, /, . . . }



Expression Trees

I Let Σ be a countable set of variable names, and Θ be a finite

set of binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.

2. If T1 and T2 are expression trees and θ is a operator in Θ,

then
T T

1 2

θ

is an expression tree.

I In this example

Σ = {a, b, c , d , e, . . . }, and Θ = {+, −, ∗, /, . . . }



Expression Trees

I Let Σ be a countable set of variable names, and Θ be a finite

set of binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.

2. If T1 and T2 are expression trees and θ is a operator in Θ,

then
T T

1 2

θ

is an expression tree.

I In this example

Σ = {a, b, c , d , e, . . . }, and Θ = {+, −, ∗, /, . . . }



Expression Trees

I Let Σ be a countable set of variable names, and Θ be a finite

set of binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.

2. If T1 and T2 are expression trees and θ is a operator in Θ,

then
T T

1 2

θ

is an expression tree.

I In this example

Σ = {a, b, c , d , e, . . . }, and Θ = {+, −, ∗, /, . . . }



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Target Machine Model

I We assume a machine with finite set of registers r0, r1, . . ., rk ,

countable set of memory locations, and instructions of the

form:

1. m← r (store instruction)

2. r ← m (load instruction)

3. r ← r op m (the result of r op m is stored in r)

4. r2 ← r2 op r1 (the result of r2 op r1 is stored in r2)

I Note:

1. In instruction 3, the memory location is the right operand.

2. In instruction 4, the destination register is the same as the left

operand register.



Key Idea

I Determines an evaluation order of the subtrees which requires

minimum number of registers.

I If the left and right subtrees require l1, and l2 (l1 < l2)

registers respectively, what should be the order of evaluation?

op
l
2

l
1



Key Idea

I Determines an evaluation order of the subtrees which requires

minimum number of registers.

I If the left and right subtrees require l1, and l2 (l1 < l2)

registers respectively, what should be the order of evaluation?

op
l
2

l
1



Key Idea

I Choice 1

1. Evaluate left subtree first, leaving result in a register. This

requires upto l1 registers.

2. Evaluate the right subtree. During this we might require upto

l2 + 1 registers (l2 registers for evaluating the right subtree and

one register to hold the value of the left subtree.)

I The maximum register requirement in this case is

max(l1, l2 + 1) = l2 + 1.



Key Idea

I Choice 1

1. Evaluate left subtree first, leaving result in a register. This

requires upto l1 registers.

2. Evaluate the right subtree. During this we might require upto

l2 + 1 registers (l2 registers for evaluating the right subtree and

one register to hold the value of the left subtree.)

I The maximum register requirement in this case is

max(l1, l2 + 1) = l2 + 1.



Key Idea

I Choice 1

1. Evaluate left subtree first, leaving result in a register. This

requires upto l1 registers.

2. Evaluate the right subtree. During this we might require upto

l2 + 1 registers (l2 registers for evaluating the right subtree and

one register to hold the value of the left subtree.)

I The maximum register requirement in this case is

max(l1, l2 + 1) = l2 + 1.



Key Idea

I Choice 1

1. Evaluate left subtree first, leaving result in a register. This

requires upto l1 registers.

2. Evaluate the right subtree. During this we might require upto

l2 + 1 registers (l2 registers for evaluating the right subtree and

one register to hold the value of the left subtree.)

I The maximum register requirement in this case is

max(l1, l2 + 1) = l2 + 1.



Key Idea

I Choice 2

1. Evaluate the right subtree first, leaving the result in a register.

During this evaluation we shall require upto l2 registers.

2. Evaluate the left subtree. During this, we might require upto

l1 + 1 registers.

I The maximum register requirement over the whole tree is

max(l1 + 1, l2) = l2

Therefore the subtree requiring more registers should be

evaluated first.



Key Idea

I Choice 2

1. Evaluate the right subtree first, leaving the result in a register.

During this evaluation we shall require upto l2 registers.

2. Evaluate the left subtree. During this, we might require upto

l1 + 1 registers.

I The maximum register requirement over the whole tree is

max(l1 + 1, l2) = l2

Therefore the subtree requiring more registers should be

evaluated first.



Key Idea

I Choice 2

1. Evaluate the right subtree first, leaving the result in a register.

During this evaluation we shall require upto l2 registers.

2. Evaluate the left subtree. During this, we might require upto

l1 + 1 registers.

I The maximum register requirement over the whole tree is

max(l1 + 1, l2) = l2

Therefore the subtree requiring more registers should be

evaluated first.



Key Idea

I Choice 2

1. Evaluate the right subtree first, leaving the result in a register.

During this evaluation we shall require upto l2 registers.

2. Evaluate the left subtree. During this, we might require upto

l1 + 1 registers.

I The maximum register requirement over the whole tree is

max(l1 + 1, l2) = l2

Therefore the subtree requiring more registers should be

evaluated first.



Key Idea

I Choice 2

1. Evaluate the right subtree first, leaving the result in a register.

During this evaluation we shall require upto l2 registers.

2. Evaluate the left subtree. During this, we might require upto

l1 + 1 registers.

I The maximum register requirement over the whole tree is

max(l1 + 1, l2) = l2

Therefore the subtree requiring more registers should be

evaluated first.



Key Idea

I Choice 2

1. Evaluate the right subtree first, leaving the result in a register.

During this evaluation we shall require upto l2 registers.

2. Evaluate the left subtree. During this, we might require upto

l1 + 1 registers.

I The maximum register requirement over the whole tree is

max(l1 + 1, l2) = l2

Therefore the subtree requiring more registers should be

evaluated first.



Labeling the Expression Tree

I Label each node by the number of registers required to

evaluate it in a store free manner.

/ *

+ +a

b c

c

d e

2

3

2

1

1

0 1 0

11 1

_

I Left and the right leaves are labeled 1 and 0 respectively,

because the left leaf must necessarily be in a register, whereas

the right leaf can reside in memory.



Labeling the Expression Tree

I Label each node by the number of registers required to

evaluate it in a store free manner.

/ *

+ +a

b c

c

d e

2

3

2

1

1

0 1 0

11 1

_

I Left and the right leaves are labeled 1 and 0 respectively,

because the left leaf must necessarily be in a register, whereas

the right leaf can reside in memory.



Labeling the Expression Tree

I Label each node by the number of registers required to

evaluate it in a store free manner.

/ *

+ +a

b c

c

d e

2

3

2

1

1

0 1 0

11 1

_

I Left and the right leaves are labeled 1 and 0 respectively,

because the left leaf must necessarily be in a register, whereas

the right leaf can reside in memory.



Labeling the Expression Tree

I Label each node by the number of registers required to

evaluate it in a store free manner.

/ *

+ +a

b c

c

d e

2

3

2

1

1

0 1 0

11 1

_

I Left and the right leaves are labeled 1 and 0 respectively,

because the left leaf must necessarily be in a register, whereas

the right leaf can reside in memory.



Labeling the Expression Tree

I Visit the tree in post-order. For every node visited do:

1. Label each left leaf by 1 and each right leaf by 0.

2. If the labels of the children of a node n are l1 and l2

respectively, then

label(n) = max(l1, l2), if l1 6= l2

= l1 + 1, otherwise



Labeling the Expression Tree

I Visit the tree in post-order. For every node visited do:

1. Label each left leaf by 1 and each right leaf by 0.

2. If the labels of the children of a node n are l1 and l2

respectively, then

label(n) = max(l1, l2), if l1 6= l2

= l1 + 1, otherwise



Labeling the Expression Tree

I Visit the tree in post-order. For every node visited do:

1. Label each left leaf by 1 and each right leaf by 0.

2. If the labels of the children of a node n are l1 and l2

respectively, then

label(n) = max(l1, l2), if l1 6= l2

= l1 + 1, otherwise



Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function

gencode(n), which produces code to evaluate the node

labeled n.

2. Register allocation is done from a stack of register names

rstack, initially containing r0, r1, . . . , rk (with r0 on top of the

stack).

3. gencode(n) evaluates n in the register on the top of the stack.

4. Temporary allocation is done from a stack of temporary

names tstack , initially containing t0, t1, . . . , tk (with t0 on top

of the stack).

5. swap(rstack) swaps the top two registers on the stack.



Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function

gencode(n), which produces code to evaluate the node

labeled n.

2. Register allocation is done from a stack of register names

rstack , initially containing r0, r1, . . . , rk (with r0 on top of the

stack).

3. gencode(n) evaluates n in the register on the top of the stack.

4. Temporary allocation is done from a stack of temporary

names tstack , initially containing t0, t1, . . . , tk (with t0 on top

of the stack).

5. swap(rstack) swaps the top two registers on the stack.



Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function

gencode(n), which produces code to evaluate the node

labeled n.

2. Register allocation is done from a stack of register names

rstack , initially containing r0, r1, . . . , rk (with r0 on top of the

stack).

3. gencode(n) evaluates n in the register on the top of the stack.

4. Temporary allocation is done from a stack of temporary

names tstack , initially containing t0, t1, . . . , tk (with t0 on top

of the stack).

5. swap(rstack) swaps the top two registers on the stack.



Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function

gencode(n), which produces code to evaluate the node

labeled n.

2. Register allocation is done from a stack of register names

rstack , initially containing r0, r1, . . . , rk (with r0 on top of the

stack).

3. gencode(n) evaluates n in the register on the top of the stack.

4. Temporary allocation is done from a stack of temporary

names tstack , initially containing t0, t1, . . . , tk (with t0 on top

of the stack).

5. swap(rstack) swaps the top two registers on the stack.



Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function

gencode(n), which produces code to evaluate the node

labeled n.

2. Register allocation is done from a stack of register names

rstack , initially containing r0, r1, . . . , rk (with r0 on top of the

stack).

3. gencode(n) evaluates n in the register on the top of the stack.

4. Temporary allocation is done from a stack of temporary

names tstack , initially containing t0, t1, . . . , tk (with t0 on top

of the stack).

5. swap(rstack) swaps the top two registers on the stack.



The Algorithm

I gencode(n) described by case analysis on the type of the node

n.

1. n is a left leaf:

n

name

gen(top(rstack)← name)

Comments: n is named by a variable say name. Code is

generated to load name into a register.



The Algorithm

I gencode(n) described by case analysis on the type of the node

n.

1. n is a left leaf:

n

name

gen(top(rstack)← name)

Comments: n is named by a variable say name. Code is

generated to load name into a register.



The Algorithm

I gencode(n) described by case analysis on the type of the node

n.

1. n is a left leaf:

n

name

gen(top(rstack)← name)

Comments: n is named by a variable say name. Code is

generated to load name into a register.



The Algorithm

I gencode(n) described by case analysis on the type of the node

n.

1. n is a left leaf:

n

name

gen(top(rstack)← name)

Comments: n is named by a variable say name. Code is

generated to load name into a register.



The Algorithm

2. n’s right child is a leaf:

name

n

nn
1 2

op

gencode(n1 )

gen(top(rstack)← top(rstack) op name)

Comments: n1 is first evaluated in the register on the top of

the stack, followed by the operation op leaving the result in

the same register.



The Algorithm

2. n’s right child is a leaf:

name

n

nn
1 2

op

gencode(n1 )

gen(top(rstack)← top(rstack) op name)

Comments: n1 is first evaluated in the register on the top of

the stack, followed by the operation op leaving the result in

the same register.



The Algorithm

2. n’s right child is a leaf:

name

n

nn
1 2

op

gencode(n1 )

gen(top(rstack)← top(rstack) op name)

Comments: n1 is first evaluated in the register on the top of

the stack, followed by the operation op leaving the result in

the same register.



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

3. The left child of n requires lesser number of registers. This

requirement is strictly less than the available number of

registers

n

1
n

2
n

op

swap(rstack); Right child goes into next to top register

gencode(n2); Evaluate right child

R := pop(rstack);

gencode(n1); Evaluate left child

gen(top(rstack)← top(rstack) op R); Issue op

push(rstack ,R);

swap(rstack) Restore register stack



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

4. The right child of n requires lesser (or the same) number of

registers than the left child, and this requirement is strictly

less than the available number of registers

n

1
n

2
n

op

gencode(n1);

R := pop(rstack);

gencode(n2);

gen(R ← R op top(rstack));

push(rstack ,R)

Comments: Same as case 3, except that the left sub-tree is

evaluated first.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



The Algorithm

5. Both the children of n require registers greater or equal to the

available number of registers.

n

1
n

2
n

op

gencode(n2);

T := pop(tstack);

gen(T ← top(rstack));

gencode(n1);

push(tstack ,T );

gen(top(rstack)← top(rstack) op T );

Comments: In this case the right sub-tree is first evaluated into a

temporary. This is followed by the evaluations of the left sub-tree

and n into the register on the top of the stack.



An Example

For the example:

/ *

+ +a

b c

c

d e

2

3

2

1

1

0 1 0

11 1

_

assuming two available registers r0 and r1, the calls to gencode and

the generated code are shown on the next slide.



An Example

For the example:

/ *

+ +a

b c

c

d e

2

3

2

1

1

0 1 0

11 1

_

assuming two available registers r0 and r1, the calls to gencode and

the generated code are shown on the next slide.



An Example

gencode(/)

SUB t1,r0

gencode(*)

MOVE r0,t1

[r0,r1]

[r0,r1]

gencode(-)
[r0,r1]

gencode(+)

MUL r1,r0

gencode(+)

DIV r1,r0

[r1]

[r1]

gencode(a)

gencode(c)
[r0]

[r0]

MOVE c,r0

MOVE a,r0

ADD e,r1

ADD c,r1

gencode(b)

gencode(d)
[r1]

[r1]

MOVE d,r1

MOVE b,r1



SETHI-ULLMAN ALGORITHM: OPTIMALITY

I The algorithm is optimal because

1. The number of load instructions generated is optimal.

2. Each binary operation specified in the expression tree is

performed only once.

3. The number of stores is optimal.

I We shall now elaborate on each of these.



SETHI-ULLMAN ALGORITHM: OPTIMALITY

I The algorithm is optimal because

1. The number of load instructions generated is optimal.

2. Each binary operation specified in the expression tree is

performed only once.

3. The number of stores is optimal.

I We shall now elaborate on each of these.



SETHI-ULLMAN ALGORITHM: OPTIMALITY

I The algorithm is optimal because

1. The number of load instructions generated is optimal.

2. Each binary operation specified in the expression tree is

performed only once.

3. The number of stores is optimal.

I We shall now elaborate on each of these.



SETHI-ULLMAN ALGORITHM: OPTIMALITY

I The algorithm is optimal because

1. The number of load instructions generated is optimal.

2. Each binary operation specified in the expression tree is

performed only once.

3. The number of stores is optimal.

I We shall now elaborate on each of these.



SETHI-ULLMAN ALGORITHM: OPTIMALITY

I The algorithm is optimal because

1. The number of load instructions generated is optimal.

2. Each binary operation specified in the expression tree is

performed only once.

3. The number of stores is optimal.

I We shall now elaborate on each of these.



SETHI-ULLMAN ALGORITHM: OPTIMALITY

1. It is easy to verify that the number of loads required by any

program computing an expression tree is at least equal to the

number of left leaves. This algorithm generates no more loads

than this.

2. Each node of the expression tree is visited exactly once. If this

node specifies a binary operation, then the algorithm branches

into steps 2,3,4 or 5, and at each of these places code is

generated to perform this operation exactly once.



SETHI-ULLMAN ALGORITHM: OPTIMALITY

1. It is easy to verify that the number of loads required by any

program computing an expression tree is at least equal to the

number of left leaves. This algorithm generates no more loads

than this.

2. Each node of the expression tree is visited exactly once. If this

node specifies a binary operation, then the algorithm branches

into steps 2,3,4 or 5, and at each of these places code is

generated to perform this operation exactly once.



SETHI-ULLMAN ALGORITHM: OPTIMALITY

3. The number of stores is optimal: this is harder to show.

I Define a major node as a node, each of whose children has a

label at least equal to the number of available registers.

I If we can show that the number of stores required by any

program computing an expression tree is at least equal the

number of major nodes, then our algorithm produces minimal

number of stores (Why?)



SETHI-ULLMAN ALGORITHM: OPTIMALITY

3. The number of stores is optimal: this is harder to show.

I Define a major node as a node, each of whose children has a

label at least equal to the number of available registers.

I If we can show that the number of stores required by any

program computing an expression tree is at least equal the

number of major nodes, then our algorithm produces minimal

number of stores (Why?)



SETHI-ULLMAN ALGORITHM: OPTIMALITY

3. The number of stores is optimal: this is harder to show.

I Define a major node as a node, each of whose children has a

label at least equal to the number of available registers.

I If we can show that the number of stores required by any

program computing an expression tree is at least equal the

number of major nodes, then our algorithm produces minimal

number of stores (Why?)



SETHI-ULLMAN ALGORITHM

I To see this, consider an expression tree and the code

generated by any optimal algorithm for this tree.

I Assume that the tree has M major nodes.

I Now consider a tree formed by replacing the subtree S

evaluated by the first store, with a leaf labeled by a name l .

2

S

n

n

l
1

n

I Let n be the major node in the original tree, just above S , and

n1 and n2 be its immediate descendants (n1 could be l itself).



SETHI-ULLMAN ALGORITHM

I To see this, consider an expression tree and the code

generated by any optimal algorithm for this tree.

I Assume that the tree has M major nodes.

I Now consider a tree formed by replacing the subtree S

evaluated by the first store, with a leaf labeled by a name l .

2

S

n

n

l
1

n

I Let n be the major node in the original tree, just above S , and

n1 and n2 be its immediate descendants (n1 could be l itself).



SETHI-ULLMAN ALGORITHM

I To see this, consider an expression tree and the code

generated by any optimal algorithm for this tree.

I Assume that the tree has M major nodes.

I Now consider a tree formed by replacing the subtree S

evaluated by the first store, with a leaf labeled by a name l .

2

S

n

n

l
1

n

I Let n be the major node in the original tree, just above S , and

n1 and n2 be its immediate descendants (n1 could be l itself).



SETHI-ULLMAN ALGORITHM

I To see this, consider an expression tree and the code

generated by any optimal algorithm for this tree.

I Assume that the tree has M major nodes.

I Now consider a tree formed by replacing the subtree S

evaluated by the first store, with a leaf labeled by a name l .

2

S

n

n

l
1

n

I Let n be the major node in the original tree, just above S , and

n1 and n2 be its immediate descendants (n1 could be l itself).



SETHI-ULLMAN ALGORITHM

I To see this, consider an expression tree and the code

generated by any optimal algorithm for this tree.

I Assume that the tree has M major nodes.

I Now consider a tree formed by replacing the subtree S

evaluated by the first store, with a leaf labeled by a name l .

2

S

n

n

l
1

n

I Let n be the major node in the original tree, just above S , and

n1 and n2 be its immediate descendants (n1 could be l itself).



SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n1 might have

decreased but the label of n2 remains unaffected (≥ k , the

available number of registers).

2. The label of n is ≥ k .

3. The node n may no longer be a major node but all other

major nodes in the original tree continue to be major nodes in

the modified tree.

4. Therefore the number of major nodes in the modified tree is

M − 1.

5. If we assume as induction hypothesis that the number of

stores for the modified tree is at least M − 1, then the number

of stores for the original tree is at least M.



SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n1 might have

decreased but the label of n2 remains unaffected (≥ k , the

available number of registers).

2. The label of n is ≥ k .

3. The node n may no longer be a major node but all other

major nodes in the original tree continue to be major nodes in

the modified tree.

4. Therefore the number of major nodes in the modified tree is

M − 1.

5. If we assume as induction hypothesis that the number of

stores for the modified tree is at least M − 1, then the number

of stores for the original tree is at least M.



SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n1 might have

decreased but the label of n2 remains unaffected (≥ k , the

available number of registers).

2. The label of n is ≥ k .

3. The node n may no longer be a major node but all other

major nodes in the original tree continue to be major nodes in

the modified tree.

4. Therefore the number of major nodes in the modified tree is

M − 1.

5. If we assume as induction hypothesis that the number of

stores for the modified tree is at least M − 1, then the number

of stores for the original tree is at least M.



SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n1 might have

decreased but the label of n2 remains unaffected (≥ k , the

available number of registers).

2. The label of n is ≥ k .

3. The node n may no longer be a major node but all other

major nodes in the original tree continue to be major nodes in

the modified tree.

4. Therefore the number of major nodes in the modified tree is

M − 1.

5. If we assume as induction hypothesis that the number of

stores for the modified tree is at least M − 1, then the number

of stores for the original tree is at least M.



SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n1 might have

decreased but the label of n2 remains unaffected (≥ k , the

available number of registers).

2. The label of n is ≥ k .

3. The node n may no longer be a major node but all other

major nodes in the original tree continue to be major nodes in

the modified tree.

4. Therefore the number of major nodes in the modified tree is

M − 1.

5. If we assume as induction hypothesis that the number of

stores for the modified tree is at least M − 1, then the number

of stores for the original tree is at least M.



SETHI-ULLMAN ALGORITHM: COMPLEXITY

Since the algorithm visits every node of the expression tree twice –

once during labeling, and once during code generation, the

complexity of the algorithm is O(n).


