Code Generation: Sethi Ullman Algorithm

Amey Karkare
karkare@cse.iitk.ac.in

March 28, 2019

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has
- a load instruction,

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has
- a load instruction,
- a store instruction, and

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has
- a load instruction,
- a store instruction, and
- binary operations involving either a register and a memory, or two registers.

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has
- a load instruction,
- a store instruction, and
- binary operations involving either a register and a memory, or two registers.
- Does not use algebraic properties of operators. If $a * b$ has to be evaluated using $r_{1} \leftarrow r_{1} * r_{2}$, then a and b have to be necessarily loaded in r_{1} and r_{2} respectively.

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has
- a load instruction,
- a store instruction, and
- binary operations involving either a register and a memory, or two registers.
- Does not use algebraic properties of operators. If $a * b$ has to be evaluated using $r_{1} \leftarrow r_{1} * r_{2}$, then a and b have to be necessarily loaded in r_{1} and r_{2} respectively.
- Extensions to take into account algebraic properties of operators.

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has
- a load instruction,
- a store instruction, and
- binary operations involving either a register and a memory, or two registers.
- Does not use algebraic properties of operators. If $a * b$ has to be evaluated using $r_{1} \leftarrow r_{1} * r_{2}$, then a and b have to be necessarily loaded in r_{1} and r_{2} respectively.
- Extensions to take into account algebraic properties of operators.
- Generates optimal code - i.e. code with least number of instructions. There may be other notions of optimality.

Sethi-Ullman Algorithm - Introduction

- Generates code for expression trees (not dags).
- Target machine model is simple. Has
- a load instruction,
- a store instruction, and
- binary operations involving either a register and a memory, or two registers.
- Does not use algebraic properties of operators. If $a * b$ has to be evaluated using $r_{1} \leftarrow r_{1} * r_{2}$, then a and b have to be necessarily loaded in r_{1} and r_{2} respectively.
- Extensions to take into account algebraic properties of operators.
- Generates optimal code - i.e. code with least number of instructions. There may be other notions of optimality.
- Complexity is linear in the size of the expression tree.

Reasonably efficient.

Expression Trees

- Here is the expression $a /(b+c)-c *(d+e)$ represented as a tree:

Expression Trees

- Here is the expression $a /(b+c)-c *(d+e)$ represented as a tree:

Expression Trees

- Here is the expression $a /(b+c)-c *(d+e)$ represented as a tree:

Expression Trees

- We have not identified common sub-expressions; else we would have a directed acyclic graph (DAG):

Expression Trees

- Let Σ be a countable set of variable names, and Θ be a finite set of binary operators. Then,

Expression Trees

- Let Σ be a countable set of variable names, and Θ be a finite set of binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.

Expression Trees

- Let Σ be a countable set of variable names, and Θ be a finite set of binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.
2. If T_{1} and T_{2} are expression trees and θ is a operator in Θ,

Expression Trees

- Let Σ be a countable set of variable names, and Θ be a finite set of binary operators. Then,

1. A single vertex labeled by a name from Σ is an expression tree.
2. If T_{1} and T_{2} are expression trees and θ is a operator in Θ,

- In this example
$\Sigma=\{a, b, c, d, e, \ldots\}$, and $\Theta=\{+,-, *, /, \ldots\}$

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

$$
\text { 1. } m \leftarrow r \quad \text { (store instruction) }
$$

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

1. $m \leftarrow r$
(store instruction)
2. $r \leftarrow m \quad$ (load instruction)

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

1. $m \leftarrow r$
(store instruction)
2. $r \leftarrow m \quad$ (load instruction)
3. $r \leftarrow r$ op m (the result of r op m is stored in r)

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

1. $m \leftarrow r \quad$ (store instruction)
2. $r \leftarrow m$ (load instruction)
3. $r \leftarrow r$ op m (the result of r op m is stored in r)
4. $r_{2} \leftarrow r_{2}$ op r_{1} (the result of r_{2} op r_{1} is stored in r_{2})

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

```
1. m\leftarrowr (store instruction)
2. r\leftarrowm (load instruction)
3. }r\leftarrowr\mathrm{ op m (the result of rop m}\mathrm{ is stored in r)
4. }\mp@subsup{r}{2}{}\leftarrow\mp@subsup{r}{2}{}\mathrm{ op }\mp@subsup{r}{1}{}\mathrm{ (the result of }\mp@subsup{r}{2}{}\mathrm{ op }\mp@subsup{r}{1}{}\mathrm{ is stored in r}\mp@subsup{r}{2}{}\mathrm{ )
```

- Note:

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

1. $m \leftarrow r \quad$ (store instruction)
2. $r \leftarrow m \quad$ (load instruction)
3. $r \leftarrow r$ op m (the result of r op m is stored in r)
4. $r_{2} \leftarrow r_{2}$ op r_{1} (the result of r_{2} op r_{1} is stored in r_{2})

- Note:

1. In instruction 3, the memory location is the right operand.

Target Machine Model

- We assume a machine with finite set of registers $r_{0}, r_{1}, \ldots, r_{k}$, countable set of memory locations, and instructions of the form:

1. $m \leftarrow r \quad$ (store instruction)
2. $r \leftarrow m \quad$ (load instruction)
3. $r \leftarrow r$ op m (the result of r op m is stored in r)
4. $r_{2} \leftarrow r_{2}$ op r_{1} (the result of r_{2} op r_{1} is stored in r_{2})

- Note:

1. In instruction 3, the memory location is the right operand.
2. In instruction 4, the destination register is the same as the left operand register.

Key Idea

- Determines an evaluation order of the subtrees which requires minimum number of registers.

Key Idea

- Determines an evaluation order of the subtrees which requires minimum number of registers.
- If the left and right subtrees require I_{1}, and $I_{2}\left(I_{1}<I_{2}\right)$ registers respectively, what should be the order of evaluation?

Key Idea

- Choice 1

Key Idea

- Choice 1

1. Evaluate left subtree first, leaving result in a register. This requires upto I_{1} registers.

Key Idea

- Choice 1

1. Evaluate left subtree first, leaving result in a register. This requires upto I_{1} registers.
2. Evaluate the right subtree. During this we might require upto $I_{2}+1$ registers (I_{2} registers for evaluating the right subtree and one register to hold the value of the left subtree.)

Key Idea

- Choice 1

1. Evaluate left subtree first, leaving result in a register. This requires upto I_{1} registers.
2. Evaluate the right subtree. During this we might require upto $I_{2}+1$ registers (I_{2} registers for evaluating the right subtree and one register to hold the value of the left subtree.)

- The maximum register requirement in this case is

$$
\max \left(I_{1}, I_{2}+1\right)=I_{2}+1
$$

Key Idea

- Choice 2

Key Idea

- Choice 2

1. Evaluate the right subtree first, leaving the result in a register. During this evaluation we shall require upto I_{2} registers.

Key Idea

- Choice 2

1. Evaluate the right subtree first, leaving the result in a register. During this evaluation we shall require upto I_{2} registers.
2. Evaluate the left subtree. During this, we might require upto $I_{1}+1$ registers.

Key Idea

- Choice 2

1. Evaluate the right subtree first, leaving the result in a register. During this evaluation we shall require upto I_{2} registers.
2. Evaluate the left subtree. During this, we might require upto $I_{1}+1$ registers.

- The maximum register requirement over the whole tree is

$$
\max \left(I_{1}+1, I_{2}\right)=I_{2}
$$

Key Idea

- Choice 2

1. Evaluate the right subtree first, leaving the result in a register. During this evaluation we shall require upto I_{2} registers.
2. Evaluate the left subtree. During this, we might require upto $I_{1}+1$ registers.

- The maximum register requirement over the whole tree is

$$
\max \left(I_{1}+1, I_{2}\right)=I_{2}
$$

Key Idea

- Choice 2

1. Evaluate the right subtree first, leaving the result in a register. During this evaluation we shall require upto I_{2} registers.
2. Evaluate the left subtree. During this, we might require upto $I_{1}+1$ registers.

- The maximum register requirement over the whole tree is

$$
\max \left(I_{1}+1, I_{2}\right)=I_{2}
$$

Therefore the subtree requiring more registers should be evaluated first.

Labeling the Expression Tree

- Label each node by the number of registers required to evaluate it in a store free manner.

Labeling the Expression Tree

- Label each node by the number of registers required to evaluate it in a store free manner.

Labeling the Expression Tree

- Label each node by the number of registers required to evaluate it in a store free manner.

Labeling the Expression Tree

- Label each node by the number of registers required to evaluate it in a store free manner.

- Left and the right leaves are labeled 1 and 0 respectively, because the left leaf must necessarily be in a register, whereas the right leaf can reside in memory.

Labeling the Expression Tree

- Visit the tree in post-order. For every node visited do:

Labeling the Expression Tree

- Visit the tree in post-order. For every node visited do:

1. Label each left leaf by 1 and each right leaf by 0 .

Labeling the Expression Tree

- Visit the tree in post-order. For every node visited do:

1. Label each left leaf by 1 and each right leaf by 0 .
2. If the labels of the children of a node n are I_{1} and I_{2} respectively, then

$$
\begin{aligned}
\operatorname{label}(n) & =\max \left(I_{1}, l_{2}\right), \text { if } I_{1} \neq I_{2} \\
& =I_{1}+1, \text { otherwise }
\end{aligned}
$$

Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function $\operatorname{gencode}(n)$, which produces code to evaluate the node labeled n.

Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function gencode(n), which produces code to evaluate the node labeled n.
2. Register allocation is done from a stack of register names rstack, initially containing $r_{0}, r_{1}, \ldots, r_{k}$ (with r_{0} on top of the stack).

Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function gencode(n), which produces code to evaluate the node labeled n.
2. Register allocation is done from a stack of register names rstack, initially containing $r_{0}, r_{1}, \ldots, r_{k}$ (with r_{0} on top of the stack).
3. gencode(n) evaluates n in the register on the top of the stack.

Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function $\operatorname{gencode}(n)$, which produces code to evaluate the node labeled n.
2. Register allocation is done from a stack of register names rstack, initially containing $r_{0}, r_{1}, \ldots, r_{k}$ (with r_{0} on top of the stack).
3. gencode(n) evaluates n in the register on the top of the stack.
4. Temporary allocation is done from a stack of temporary names tstack, initially containing $t_{0}, t_{1}, \ldots, t_{k}$ (with t_{0} on top of the stack).

Assumptions and Notational Conventions

1. The code generation algorithm is represented as a function gencode(n), which produces code to evaluate the node labeled n.
2. Register allocation is done from a stack of register names rstack, initially containing $r_{0}, r_{1}, \ldots, r_{k}$ (with r_{0} on top of the stack).
3. gencode(n) evaluates n in the register on the top of the stack.
4. Temporary allocation is done from a stack of temporary names tstack, initially containing $t_{0}, t_{1}, \ldots, t_{k}$ (with t_{0} on top of the stack).
5. swap(rstack) swaps the top two registers on the stack.

The Algorithm

- gencode(n) described by case analysis on the type of the node n.

The Algorithm

- gencode(n) described by case analysis on the type of the node n.

1. n is a left leaf:

The Algorithm

- gencode(n) described by case analysis on the type of the node n.

1. n is a left leaf:

The Algorithm

- gencode(n) described by case analysis on the type of the node n.

1. n is a left leaf:

$$
\operatorname{gen}(\operatorname{top}(r s t a c k) \leftarrow \text { name })
$$

Comments: n is named by a variable say name. Code is generated to load name into a register.

The Algorithm

2. n's right child is a leaf:

The Algorithm

2. n's right child is a leaf:

The Algorithm

2. n's right child is a leaf:

$$
\begin{aligned}
& \operatorname{gencode}\left(n_{1}\right) \\
& \operatorname{gen}(\operatorname{top}(r s t a c k) \leftarrow \text { top }(r s t a c k) \text { op name })
\end{aligned}
$$

Comments: n_{1} is first evaluated in the register on the top of the stack, followed by the operation op leaving the result in the same register.

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

swap(rstack);
Right child goes into next to top register

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

swap(rstack);
gencode(n_{2});

Right child goes into next to top register Evaluate right child

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

swap(rstack);
gencode(n_{2});
$R:=\operatorname{pop}(r s t a c k) ;$

Right child goes into next to top register Evaluate right child

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

swap(rstack);
gencode(n_{2});
$R:=\operatorname{pop}(r s t a c k) ;$
gencode(n_{1});

Right child goes into next to top register Evaluate right child

Evaluate left child

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

swap(rstack);
gencode(n_{2});
$R:=\operatorname{pop}(r s t a c k) ;$
gencode $\left(n_{1}\right) ; \quad$ Evaluate left child
gen(top $($ rstack $) \leftarrow$ top (rstack) op R); Issue op

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

swap(rstack);
gencode(n_{2});
$R:=\operatorname{pop}(r s t a c k) ;$
gencode $\left(n_{1}\right) ; \quad$ Evaluate left child
gen(top $($ rstack $) \leftarrow$ top (rstack) op R); Issue op
push(rstack, R);

The Algorithm

3. The left child of n requires lesser number of registers. This requirement is strictly less than the available number of registers

swap(rstack);
gencode(n_{2});
$R:=\operatorname{pop}(r s t a c k) ;$
gencode $\left(n_{1}\right) ; \quad$ Evaluate left child
gen(top $($ rstack $) \leftarrow$ top (rstack) op R); Issue op
push(rstack, R);
swap(rstack) Restore register stack

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

$\operatorname{gencode}\left(n_{1}\right)$;

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

gencode $\left(n_{1}\right)$;
$R:=\operatorname{pop}(r s t a c k) ;$

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

gencode $\left(n_{1}\right)$;
$R:=\operatorname{pop}(r s t a c k) ;$
gencode(n_{2});

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

gencode $\left(n_{1}\right)$;
$R:=\operatorname{pop}($ rstack $)$;
gencode(n_{2});
$\operatorname{gen}(R \leftarrow R$ op top(rstack));

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

gencode $\left(n_{1}\right)$;
$R:=\operatorname{pop}($ rstack $)$;
gencode(n_{2});
$\operatorname{gen}(R \leftarrow R$ op top(rstack));
push(rstack, R)

The Algorithm

4. The right child of n requires lesser (or the same) number of registers than the left child, and this requirement is strictly less than the available number of registers

gencode $\left(n_{1}\right)$;
$R:=\operatorname{pop}(r s t a c k) ;$
gencode(n_{2});
$\operatorname{gen}(R \leftarrow R$ op top $(r s t a c k))$;
push(rstack, R)
Comments: Same as case 3, except that the left sub-tree is evaluated first.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

The Algorithm

5. Both the children of n require registers greater or equal to the available number of registers.

Comments: In this case the right sub-tree is first evaluated into a temporary. This is followed by the evaluations of the left sub-tree and n into the register on the top of the stack.

An Example

For the example:

An Example

For the example:

assuming two available registers r_{0} and r_{1}, the calls to gencode and the generated code are shown on the next slide.

An Example

SETHI-ULLMAN ALGORITHM: OPTIMALITY

- The algorithm is optimal because

SETHI-ULLMAN ALGORITHM: OPTIMALITY

- The algorithm is optimal because

1. The number of load instructions generated is optimal.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

- The algorithm is optimal because

1. The number of load instructions generated is optimal.
2. Each binary operation specified in the expression tree is performed only once.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

- The algorithm is optimal because

1. The number of load instructions generated is optimal.
2. Each binary operation specified in the expression tree is performed only once.
3. The number of stores is optimal.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

- The algorithm is optimal because

1. The number of load instructions generated is optimal.
2. Each binary operation specified in the expression tree is performed only once.
3. The number of stores is optimal.

- We shall now elaborate on each of these.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

1. It is easy to verify that the number of loads required by any program computing an expression tree is at least equal to the number of left leaves. This algorithm generates no more loads than this.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

1. It is easy to verify that the number of loads required by any program computing an expression tree is at least equal to the number of left leaves. This algorithm generates no more loads than this.
2. Each node of the expression tree is visited exactly once. If this node specifies a binary operation, then the algorithm branches into steps $2,3,4$ or 5 , and at each of these places code is generated to perform this operation exactly once.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

3. The number of stores is optimal: this is harder to show.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

3. The number of stores is optimal: this is harder to show.

- Define a major node as a node, each of whose children has a label at least equal to the number of available registers.

SETHI-ULLMAN ALGORITHM: OPTIMALITY

3. The number of stores is optimal: this is harder to show.

- Define a major node as a node, each of whose children has a label at least equal to the number of available registers.
- If we can show that the number of stores required by any program computing an expression tree is at least equal the number of major nodes, then our algorithm produces minimal number of stores (Why?)

SETHI-ULLMAN ALGORITHM

- To see this, consider an expression tree and the code generated by any optimal algorithm for this tree.

SETHI-ULLMAN ALGORITHM

- To see this, consider an expression tree and the code generated by any optimal algorithm for this tree.
- Assume that the tree has M major nodes.

SETHI-ULLMAN ALGORITHM

- To see this, consider an expression tree and the code generated by any optimal algorithm for this tree.
- Assume that the tree has M major nodes.
- Now consider a tree formed by replacing the subtree S evaluated by the first store, with a leaf labeled by a name I.

SETHI-ULLMAN ALGORITHM

- To see this, consider an expression tree and the code generated by any optimal algorithm for this tree.
- Assume that the tree has M major nodes.
- Now consider a tree formed by replacing the subtree S evaluated by the first store, with a leaf labeled by a name I.

SETHI-ULLMAN ALGORITHM

- To see this, consider an expression tree and the code generated by any optimal algorithm for this tree.
- Assume that the tree has M major nodes.
- Now consider a tree formed by replacing the subtree S evaluated by the first store, with a leaf labeled by a name I.

- Let n be the major node in the original tree, just above S, and n_{1} and n_{2} be its immediate descendants (n_{1} could be $/$ itself).

SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n_{1} might have decreased but the label of n_{2} remains unaffected ($\geq k$, the available number of registers).

SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n_{1} might have decreased but the label of n_{2} remains unaffected ($\geq k$, the available number of registers).
2. The label of n is $\geq k$.

SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n_{1} might have decreased but the label of n_{2} remains unaffected $(\geq k$, the available number of registers).
2. The label of n is $\geq k$.
3. The node n may no longer be a major node but all other major nodes in the original tree continue to be major nodes in the modified tree.

SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n_{1} might have decreased but the label of n_{2} remains unaffected $(\geq k$, the available number of registers).
2. The label of n is $\geq k$.
3. The node n may no longer be a major node but all other major nodes in the original tree continue to be major nodes in the modified tree.
4. Therefore the number of major nodes in the modified tree is $M-1$.

SETHI-ULLMAN ALGORITHM

1. In the modified tree, the (modified) label of n_{1} might have decreased but the label of n_{2} remains unaffected $(\geq k$, the available number of registers).
2. The label of n is $\geq k$.
3. The node n may no longer be a major node but all other major nodes in the original tree continue to be major nodes in the modified tree.
4. Therefore the number of major nodes in the modified tree is $M-1$.
5. If we assume as induction hypothesis that the number of stores for the modified tree is at least $M-1$, then the number of stores for the original tree is at least M.

SETHI-ULLMAN ALGORITHM: COMPLEXITY

Since the algorithm visits every node of the expression tree twice once during labeling, and once during code generation, the complexity of the algorithm is $O(n)$.

