
Principles of Compiler Design
Code Generation

1

Compiler

Front End

Lexical
Analysis

Syntax
Analysis

Semantic
Analysis

(Language specific)

Token
stream

Abstract
Syntax
tree

Source
Program

Target
Program

Back End

Code
Generation

Intermediate
Code

Code generation and Instruction
Selection

Requirements
• output code must be correct
• output code must be of high quality
• code generator should run efficiently

2

Symbol
table

input outputFront
end

Intermediate
Code generator

Code
generator

Design of code generator: Issues
• Input: Intermediate representation with symbol

table
– assume that input has been validated by the front end

• Target programs :
– absolute machine language

fast for small programs
– relocatable machine code

requires linker and loader
– assembly code

requires assembler, linker, and loader

3

More Issues…
• Instruction selection

– Uniformity
– Completeness
– Instruction speed, power consumption

• Register allocation
– Instructions with register operands are

faster
– store long life time and counters in registers
– temporary locations
– Even odd register pairs

• Evaluation order
4

Instruction Selection
• straight forward code if efficiency is not an issue

a=b+c Mov b, R0
d=a+e Add c, R0

Mov R0, a
Mov a, R0 can be eliminated
Add e, R0
Mov R0, d

a=a+1 Mov a, R0 Inc a
Add #1, R0
Mov R0, a

5

Example Target Machine
• Byte addressable with 4 bytes per word
• n registers R0, R1, ..., Rn-l
• Two address instructions of the form

opcode source, destination
• Usual opcodes like move, add, sub etc.
• Addressing modes

MODE FORM ADDRESS
Absolute M M
register R R
index c(R) c+content(R)
indirect register *R content(R)
indirect index *c(R) content(c+content(R))
literal #c c

6

Flow Graph

• Graph representation of three address
code

• Useful for understanding code generation
(and for optimization)

• Nodes represent computation
• Edges represent flow of control

7

Basic blocks
• (maximum) sequence of consecutive

statements in which flow of control enters at
the beginning and leaves at the end

Algorithm to identify basic blocks
• determine leader

– first statement is a leader
– any target of a goto statement is a leader
– any statement that follows a goto statement is a

leader
• for each leader its basic block consists of the

leader and all statements up to next leader8

Flow graphs
• add control flow information to basic

blocks
• nodes are the basic blocks
• there is a directed edge from B1 to B2 if B2

can follow B1 in some execution sequence
– there is a jump from the last statement of B1

to the first statement of B2
– B2 follows B1 in natural order of execution

• initial node: block with first statement as
leader

9

Next use information
• for register and temporary allocation
• remove variables from registers if not

used
• statement X = Y op Z

defines X and uses Y and Z
• scan each basic blocks backwards
• assume all temporaries are dead on

exit and all user variables are live on
exit

10

Computing next use information

Suppose we are scanning
i : X := Y op Z
in backward scan

1. attach to statement i, information in symbol
table about X, Y, Z

2. set X to “not live” and “no next use” in symbol
table

3. set Y and Z to be “live” and next use as i in
symbol table

11

Example

1: t1 = a * a
2: t2 = a * b
3: t3 = 2 * t2
4: t4 = t1 + t3
5: t5 = b * b
6: t6 = t4 + t5
7: X = t6

12

Example

7: no temporary is live
6: t6:use(7), t4 t5 not live
5: t5:use(6)
4: t4:use(6), t1 t3 not live
3: t3:use(4), t2 not live
2: t2:use(3)
1: t1:use(4)

t1

t2

t3

t4

t5

t6

13

Symbol Table

dead

dead

dead

dead

dead

dead

Use in 7

Use in 6

Use in 6

Use in 4

Use in 4

Use in 3

STATEMENT
1: t1 = a * a
2: t2 = a * b
3: t3 = 2 * t2
4: t4 = t1 + t3
5: t5 = b * b
6: t6 = t4 + t5
7: X = t6

Example …

1: t1 = a * a
2: t2 = a * b
3: t2 = 2 * t2

4: t1 = t1 + t2

5: t2 = b * b
6: t1 = t1 + t2

7: X = t1

14

1

2

3

4

5

6

7

t1 t2

t3

t4
t5

t6

STATEMENT
1: t1 = a * a
2: t2 = a * b
3: t3 = 2 * t2
4: t4 = t1 + t3
5: t5 = b * b
6: t6 = t4 + t5
7: X = t6

Code Generator

• consider each statement
• remember if operands are in registers
• Register descriptor

– Keep track of what is currently in each register.
– Initially all the registers are empty

• Address descriptor
– Keep track of location where current value of

the name can be found at runtime
– The location might be a register, stack,

memory address or a set of those
15

Code Generation Algorithm
for each X = Y op Z do

• invoke a function getreg to
determine location L where X must
be stored. Usually L is a register.

• Consult address descriptor of Y to
determine Y'. Prefer a register for Y'.
If value of Y not already in L generate

Mov Y', L

16

Code Generation Algorithm
• Generate

op Z', L
Again prefer a register for Z. Update
address descriptor of X to indicate X is in L.

• If L is a register, update its descriptor to
indicate that it contains X and remove X
from all other register descriptors.

• If current value of Y and/or Z have no next
use and are dead on exit from block and
are in registers, change register descriptor
to indicate that they no longer contain Y
and/or Z.

17

Function getreg
1. If Y is in register (that holds no other values)

and Y is not live and has no next use after
X = Y op Z

then return register of Y for L.
2. Failing (1) return an empty register
3. Failing (2) if X has a next use in the block or

op requires register then get a register R,
store its content into M (by Mov R, M) and
use it.

4. else select memory location X as L
18

Example
Stmt code reg desc addr desc
t1=a-b mov a,R0

sub b,R0 R0 contains t1 t1 in R0

t2=a-c mov a,R1 R0 contains t1 t1 in R0

sub c,R1 R1 contains t2 t2 in R1

t3=t1+t2 add R1,R0 R0 contains t3 t3 in R0

R1 contains t2 t2 in R1

d=t3+t2 add R1,R0 R0 contains d d in R0

mov R0,d d in R0 and
memory

19

t1=a-b
t2=a-c
t3=t1+t2
d=t3+t2

DAG representation of basic blocks
• useful data structures for implementing

transformations on basic blocks
• gives a picture of how value computed by a

statement is used in subsequent statements
• good way of determining common sub-

expressions
• A dag for a basic block has following labels on the

nodes
– leaves are labeled by unique identifiers, either variable

names or constants
– interior nodes are labeled by an operator symbol
– nodes are also optionally given a sequence of

identifiers for labels
20

DAG representation: example
1. t1 := 4 * i
2. t2 := a[t1]
3. t3 := 4 * i
4. t4 := b[t3]
5. t5 := t2 * t4
6. t6 := prod + t5
7. prod := t6
8. t7 := i + 1
9. i := t7
10. if i <= 20 goto (1)

21

+

prod0 *

[] []

*

i04

ba +

1

20

<=

t1

t4

t5

t6

t7

(1)

t3

t2

prod

i

Code Generation from DAG
S1 = 4 * i
S2 = addr(A)-4
S3 = S2[S1]
S4 = 4 * i
S5 = addr(B)-4
S6 = S5[S4]
S7 = S3 * S6
S8 = prod+S7
prod = S8
S9 = I+1
I = S9
If I <= 20 goto (1)

22

S1 = 4 * i
S2 = addr(A)-4
S3 = S2[S1]

S5 = addr(B)-4
S6 = S5[S4]
S7 = S3 * S6

prod = prod + S7

I = I + 1
If I <= 20 goto (1)

Rearranging order of the code
• Consider

following basic
block

t1 = a + b
t2 = c + d
t3 = e –t2
X = t1 –t3

and its DAG
23

-

+

a b

-

e +

c d

X

t3

t2

t1

Rearranging order …
Three adress code for
the DAG (assuming
only two registers are
available)

MOV a, R0
ADD b, R0
MOV c, R1
ADD d, R1
MOV R0, t1
MOV e, R0
SUB R1, R0
MOV t1, R1
SUB R0, R1
MOV R1, X

24

Rearranging the code as
t2 = c + d
t3 = e –t2

t1 = a + b
X = t1 –t3

gives
MOV c, R0
ADD d, R0
MOV e, R1
SUB R0, R1
MOV a, R0
ADD b, R0
SUB R1, R0
MOV R1, X

Register spilling

Register reloading

