
Principles of Compiler Design
Intermediate Representation

Compiler

Front End

Lexical 
Analysis

Syntax 
Analysis

Semantic
Analysis

(Language specific)

Token
stream

Abstract
Syntax
tree

Unambiguous
Program
representation

Source
Program

Target
Program

Back End



Intermediate Representation Design

• More of a wizardry rather than science
• Compiler commonly use 2-3 IRs
• HIR (high level IR) preserves loop structure 

and array bounds
• MIR (medium level IR) reflects range of 

features in a set of source languages
– language independent
– good for code generation for one or more 

architectures
– appropriate for most optimizations

• LIR (low level IR) low level similar to the 
machines
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• Compiler writers have tried to define 
Universal IRs and have failed. (UNCOL in 
1958)

• There is no standard Intermediate 
Representation. IR is a step in expressing a 
source program so that machine 
understands it

• As the translation takes place, IR is 
repeatedly analyzed and transformed

• Compiler users want analysis and 
translation to be fast and correct

• Compiler writers want optimizations to be 
simple to write, easy to understand and 
easy to extend

• IR should be simple and light weight while 
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Issues in IR Design
• source language and target language
• porting cost or reuse of existing design
• whether appropriate for optimizations
• U-code IR used on PA-RISC and Mips. 

Suitable for expression evaluation on stacks 
but less suited for load-store architectures

• both compilers translate U-code to another 
form
– HP translates to very low level representation
– Mips translates to MIR and translates back to 

U-code for code generator
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Issues in new IR Design

• how much machine dependent
• expressiveness: how many languages 

are covered
• appropriateness for code optimization
• appropriateness for code generation
• Use more than one IR (like in PA-RISC)

Front
end

Optimizerucode SLLIC
Used by 
HP3000

As these were
stack machines

Spectrum 
Low Level 

Intermediate code
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Issues in new IR Design …

• Use more than one IR for more than one 
optimization

• represent subscripts by list of subscripts: 
suitable for dependence analysis

• make addresses explicit in linearized form: 

– suitable for constant folding, strength 
reduction, loop invariant code motion, other 
basic optimizations
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float a[20][10];
use a[i][j+2]

HIR

t1a[i,j+2]

MIR

t1 j+2

t2 i*20

t3 t1+t2

t4 4*t3

t5 addr a

t6 t4+t5

t7*t6

LIR

r1 [fp-4]

r2 r1+2

r3 [fp-8]

r4 r3*20

r5 r4+r2

r6 4*r5

r7fp-216

f1 [r7+r6]
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High level IR

int f(int a, int b) {
int c;
c = a + 2;
print(b, c);

}

• Abstract syntax tree
– keeps enough information to reconstruct source form
– keeps information about symbol table
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function

ident f paramlist body

ident a paramlist

ident b end

declist

ident c end

stmtlist

=

ident c +

ident a const 2

stmtlist

call

ident
print

arglist

ident b arglist

ident c end

end

Identifiers are actually
Pointers to the

Symbol table entries
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• Medium level IR
– reflects range of features in a set of source 

languages
– language independent
– good for code generation for a number of 

architectures
– appropriate for most of the optimizations
– normally three address code

• Low level IR
– corresponds one to one to target machine 

instructions
– architecture dependent

• Multi-level IR
– has features of MIR and LIR
– may also have some features of HIR
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Abstract Syntax Tree/DAG

• Condensed form of a parse tree

• useful for representing language constructs

• Depicts the natural hierarchical structure of 
the source program
– Each internal node represents an operator

– Children of the nodes represent operands

– Leaf nodes represent operands

• DAG is more compact than abstract syntax 
tree because common sub expressions are 
eliminated
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a := b * -c + b * -c

assign

a +

* *

b uminus b uminus

c c

assign

a +

*

b uminus

c

Abstract syntax tree Directed Acyclic Graph
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Three address code

• A linearized representation of a syntax tree 
where explicit names correspond to the 
interior nodes of the graph

• Sequence of statements of the general form 

X := Y op Z
– X, Y or Z are names, constants or compiler 

generated  temporaries

– op stands for any operator such as a fixed- or 
floating-point arithmetic operator, or a logical 
operator

– Extensions to handle arrays, function call
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Three address code …

• Only one operator on the right hand side is 
allowed

• Source expression like x + y * z might be 
translated into

t1 := y * z
t2 := x + t1

where t1 and t2 are compiler generated 
temporary names

• Unraveling of complicated arithmetic expressions 
and of control flow makes 3-address code 
desirable for code generation and optimization

• The use of names for intermediate values allows 
3-address code  to be easily rearranged
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Three address instructions

• Assignment

– x = y op z

– x = op y

– x = y

• Jump

– goto L

– if x relop y goto L

• Indexed assignment

– x = y[i]

– x[i] = y

• Function

– param x

– call p,n

– return y

• Pointer

– x = &y

– x = *y

– *x = y
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Other IRs
• SSA: Single Static Assignment
• RTL: Register transfer language
• Stack machines: P-code
• CFG: Control Flow Graph
• Dominator Trees
• DJ-graph: dominator tree augmented with join edges
• PDG: Program Dependence Graph
• VDG: Value Dependence Graph
• GURRR: Global unified resource requirement 

representation. Combines PDG with resource 
requirements

• Java intermediate bytecodes
• The list goes on ......
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Symbol Table

• Compiler uses symbol table to keep 
track of scope and binding information 
about names

• changes to table occur
– if a new name is discovered
– if new information about an existing name 

is discovered

• Symbol table must have mechanism to:
– add new entries
– find existing information efficiently
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Symbol Table

• Two common mechanism:
– linear lists

• simple to implement, poor performance

– hash tables
• greater programming/space overhead, good 

performance

• Compiler should be able to grow 
symbol table dynamically
– If size is fixed, it must be large enough for the 

largest program
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Data Structures for SymTab

• List data structure

– simplest to implement

– use a single array to store names and information

– search for a name is linear

– entry and lookup are independent operations

– cost of entry and search operations are very high and 
lot of time goes into book keeping

• Hash table

– The advantages are obvious

21



Symbol Table Entries

• each entry corresponds to a declaration of a 
name

• format need not be uniform because 
information depends upon the usage of the 
name

• each entry is a record consisting of consecutive 
words
– If uniform records are desired, some entries may 

be kept outside the symbol table (e.g. variable 
length strings)
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Symbol Table Entries
• information is entered into symbol table at various 

times
– keywords are entered initially
– identifier lexemes are entered by lexical analyzer
– attribute values are filled in as information is available

• a name may denote several objects in the same block
int x;
struct x {float y, z; }

– lexical analyzer returns the name itself and not pointer to 
symbol table entry

– record in the symbol table is created when role of the name 
becomes clear

– in this case two symbol table entries will be created
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• attributes of a name are entered in 
response to declarations

• labels are often identified by colon (:)
• syntax of procedure/function specifies that 

certain identifiers are formals
• there is a distinction between token id, 

lexeme and attributes of the names
– it is difficult to work with lexemes
– if there is modest upper bound on length then 

lexemes can be stored in symbol table
– if limit is large store lexemes separately
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Storage Allocation Information

• information about storage locations is kept in 
the symbol table
– if target is assembly code then assembler can take 

care of storage for various names

• compiler needs to generate data definitions to 
be appended to assembly code

• if target is machine code then compiler does 
the allocation

• for names whose storage is allocated at 
runtime no storage allocation is done
– compiler plans out activation records
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Representing Scope Information
• entries are declarations of names
• when a lookup is done, entry for appropriate 

declaration must be returned
• scope rules determine which entry is appropriate
• maintain separate table for each scope
• symbol table for a procedure or scope is compile 

time equivalent an activation record
• information about non local is found by scanning 

symbol table for the enclosing procedures
• symbol table can be attached to abstract syntax 

of the procedure (integrated into intermediate 
representation)
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Symbol attributes and symbol table 
entries

• Symbols have associated attributes
• typical attributes are name, type, scope, size, 

addressing mode etc.
• a symbol table entry collects together attributes 

such that they can be easily set and retrieved
• example of typical names in symbol table

Name Type
name character string
class enumeration
size integer
type enumeration
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Nesting structure of an example 
Pascal program

program e;
var a, b, c: integer;

procedure f;
var a, b, c: integer;
begin 

a := b+c
end;

procedure g;
var a, b: integer;

procedure h;
var c, d: integer;
begin 

c := a+d
end;

procedure i;
var b, d: integer;
begin 

b:= a+c
end;

begin
….

end
procedure j;

var b, d: integer;
begin 

b := a+d
end;

begin 
a := b+c

end.
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e:a,b,c

f:a,b,c

g:a,b

h:c,d

i:b,d

j:b,d



Global Symbol table structure

• scope and visibility rules determine the 
structure of global symbol table

• for Algol class of languages scoping 
rules structure the symbol table as tree 
of local tables
– global scope as root
– tables for nested scope as children of the 

table for the scope they are nested in
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Global Symbol table structure

e( ) ‘s symtab
Integer a
Integer b
Integer c

g( ) ‘s symtab
Integer a
Integer b

f( ) ‘s symtab
Integer a
Integer b
Integer c

j( ) ‘s symtab
Integer b
Integer d

h( ) ‘s symtab
Integer c
Integer d

i( ) ‘s symtab
Integer b
Integer d
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e:a,b,c

f:a,b,c

g:a,b

h:c,d

i:b,d

j:b,d



Example
program sort;

var a : array[0..10] of integer;

procedure readarray;

var i :integer;

:

procedure exchange(i, j

:integer)

:
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procedure quicksort (m, n :integer);
var i :integer;

function partition (y, z 

:integer) :integer;

var i, j, x, v :integer;

:
i:= partition (m,n);
quicksort (m,i-1);
quicksort(i+1, n);

:
begin{main}

readarray;
quicksort(1,9)

end.
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