
Runtime Environment

• Relationship between names and data 
objects (of target machine)

• Allocation & de-allocation is managed by run 
time support package

• Each execution of a procedure is an 
activation of the procedure. If procedure is 
recursive, several activations may be alive at 
the same time.
• If a and b are activations of two procedures then 

their lifetime is either non overlapping  or nested
• A procedure is recursive  if an activation can 

begin before an earlier activation of the same 
procedure has ended 1



Procedure

• A procedure definition is a declaration 
that associates an identifier with a 
statement (procedure body)

• When a procedure name appears in an 
executable statement, it is called at 
that point

• Formal parameters are the one that 
appear in declaration. Actual 
Parameters are the one that appear in 
when a procedure is called
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Activation tree
• Control flows sequentially
• Execution of a procedure starts at the beginning 

of body
• It returns control  to place where procedure was 

called from
• A tree can be used, called an activation tree, to 

depict the way control enters and leaves 
activations
• The root represents the activation of main program
• Each node represents an activation of procedure
• The node a is parent of b if control flows from a to b
• The node a is to the left of node b if lifetime of a

occurs before b
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Example
program sort;

var a : array[0..10] of 
integer;

procedure readarray;

var i :integer;

:

function partition (y, z 

:integer) 
:integer;

var i, j ,x, v :integer;

:
4

procedure quicksort (m, n
:integer);

var i :integer;
:

i:= partition (m,n);
quicksort (m,i-1);
quicksort(i+1, n);

:
begin{main}

readarray;
quicksort(1,9)

end.
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Control stack

• Flow  of control in program corresponds 
to depth first traversal of activation tree

• Use a stack called control stack to keep 
track of live procedure activations

• Push the node when activation begins 
and pop the node when activation ends

• When the node n is at the top of the 
stack the stack contains the nodes along 
the path from n to the root
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Scope of declaration
• A declaration is a syntactic construct associating 

information with a name
– Explicit declaration :Pascal (Algol class of languages)

var i : integer
– Implicit declaration: Fortran

i is assumed to be integer
• There may be independent declarations of same 

name in a program.
• Scope rules determine which declaration applies 

to a name
• Name binding

name  storage value
7
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Storage organization

• The runtime storage 
might be subdivided 
into 
– Target code

– Data objects

– Stack to keep track of 
procedure activation

– Heap to keep all other 
information
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Activation Record
• temporaries: used in 

expression evaluation
• local data: field for local data
• saved machine status: holds 

info about machine status 
before procedure call

• access link : to access non local 
data

• control link :points to 
activation record of caller

• actual parameters: field to 
hold actual parameters

• returned value: field for 
holding value to be returned

Temporaries

local data

machine status

Access links

Control links

Parameters

Return value
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Activation Records: Examples

• Examples on the next few slides by Prof 
Amitabha Sanyal, IIT Bombay

• C/C++ programs with gcc extensions

• Compiled on x86_64
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Example 1 – Vanilla Program in C
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Example 2 – Function with Local 
Variables 
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Example 3 – Function with 
Parameters
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Example 4 – Reference Parameters
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Example 5 – Global Variables
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Example 6 – Recursive Functions
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Example 7 – Array Access
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Example 8 – Records and Pointers
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Example 9 – Dynamically Created 
Data 
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Issues to be addressed

• Can procedures be recursive?
• What happens to locals when 

procedures return from an activation?
• Can procedure refer to non local 

names?
• How to pass parameters?
• Can procedure be parameter?
• Can procedure be returned?
• Can storage  be dynamically allocated?
• Can storage be de-allocated?
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Layout of local data

• Assume byte is the smallest unit
• Multi-byte objects are stored in consecutive 

bytes and given address of first byte
• The amount of storage needed is determined 

by its type
• Memory allocation is done as the 

declarations are processed
– Keep a count of memory locations allocated for 

previous declarations
– From the count relative address of the storage 

for a local can be determined
– As an offset from some fixed position
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Layout of local data

• Data may have to be aligned (in a word) 
padding is done to have alignment. 

• When space is important
– Complier may pack the data so no padding is left
– Additional instructions may be required to 

execute packed data
– Tradeoff between space and execution time
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Storage Allocation Strategies

• Static allocation: lays out storage 
at compile time for all data objects

• Stack allocation: manages the 
runtime storage as a stack

• Heap allocation :allocates and de-
allocates storage as needed at 
runtime from heap
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Static allocation

• Names are bound to storage as the 
program is compiled

• No runtime support is required
• Bindings do not change at run time
• On every invocation of procedure 

names are bound to the same 
storage

• Values of local names are retained 
across activations of a procedure
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• Type of a name determines the amount of 
storage to be set aside

• Address of a storage consists of an offset 
from the end of an activation record

• Compiler decides location of each 
activation

• All the addresses can be filled at compile 
time

• Constraints
– Size of all data objects must be known at 

compile time
– Recursive procedures are not allowed
– Data structures cannot be created dynamically     

25



Stack Allocation
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Calling Sequence

• A call sequence 
allocates an 
activation record and 
enters information 
into its field

• A return sequence 
restores the state of 
the machine so that 
calling procedure can 
continue execution
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Call Sequence

• Caller evaluates the actual 
parameters

• Caller stores return address and 
other values (control link) into 
callee’s activation record

• Callee saves register values and 
other status information

• Callee initializes its local data and 
begins execution
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Return Sequence

• Callee places a return value next 
to activation record of caller

• Restores registers using 
information in status field

• Branch to return address

• Caller copies return value into its 
own activation record 
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Long/Unknown Length Data
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Dangling references
Referring to locations which have been deallocated

main() {

int *p;

p = dangle(); /* dangling reference */

}

int *dangle() {  

int i=23;

return &i;

}
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Heap Allocation

• Stack allocation cannot be used if:

– The values of the local variables must be 
retained when an activation ends

– A called activation outlives the caller

• In such a case de-allocation of activation 
record cannot occur in last-in first-out 
fashion

• Heap allocation gives out pieces of 
contiguous storage for activation records
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Heap Allocation …

• Pieces may be de-allocated in any order

• Over time the heap will consist of alternate 
areas that are free and in use

• Heap manager is supposed to make use of 
the free space

• For efficiency reasons it may be helpful to 
handle small activations as a special case
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Heap Allocation …

• For each size of interest keep a linked list of 
free blocks of that size

• Fill a request of size s with block of size s′ 
where s′ is the smallest size greater than or 
equal to s. 

• When the block is deallocated, return it to 
the corresponding list
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Heap Allocation …

• For large blocks of storage use heap 
manager

• For large amount of storage computation 
may take some time to use up memory
– time taken by the manager may be negligible 

compared to the computation time
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Access to non-local names

• Scope rules determine the treatment of 
non-local names

• A common rule is lexical scoping or static 
scoping (most languages use lexical 
scoping)

– Most closely nested declaration

• Alternative is dynamic scoping

– Most closely nested activation
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Block

• Statement containing its own data declarations

• Blocks can be nested

– also  referred to as block structured

• Scope of the declaration is given by most 
closely nested rule

– The scope of a declaration in block B includes B

– If X is not declared in B then an occurrence of X in B 
is in the scope of declaration of X in B′ such that

• B′ has a declaration of X

• B′ is most closely nested around B
37



Example
main()
{ BEGINNING of B0

int a=0
int b=0
{ BEGINNING of B1

int b=1
{ BEGINNING of B2

int a=2
print a, b

} END of B2

{ BEGINNING of B3
int b=3
print a, b

} END of B3
print a, b

} END of B1
print a, b

} END of B0
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Blocks …

• Blocks are simpler to 
handle than procedures

• Blocks can be treated as 
parameter less 
procedures

• Either use stack for 
memory allocation

• OR allocate space for 
complete procedure 
body at one time
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Lexical scope without nested procedures

• A procedure definition cannot occur within 
another

• Therefore, all non local references are global and 
can be allocated at compile time

• Any name non-local to one procedure is non-local 
to all procedures

• In absence of nested procedures use stack 
allocation

• Storage for non locals is allocated statically
– Any other name must be local to the top of the stack

• Static allocation of non local has advantage:
– Procedures can be passed/returned as parameters
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Scope with nested procedures

Program sort;

var a: array[1..n] of integer;

x: integer;

procedure readarray;

var i: integer;

begin

end;

procedure exchange(i,j:integer)

begin 

end;
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procedure quicksort(m,n:integer);
var k,v : integer;

function partition(y,z:integer): integer;
var i,j: integer;
begin

end;
begin

.
end;

begin
.

end.



Nesting Depth

• Main procedure is at depth 1
• Add 1 to depth as we go from enclosing to 

enclosed procedure

42

Access to non-local names
• Include a field ‘access link’ in the activation 

record

• If p is nested in q then access link of p 
points to the access link in most recent 
activation of q
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Access to non local names …

• Suppose procedure p at depth np refers to a 
non-local a at depth na (na ≤ np), then 
storage for a can be found as
– follow (np-na) access links from the record at 

the top of the stack
– after following (np-na) links we reach 

procedure for which a is local

• Therefore, address of a non local a in p can 
be stored in symbol table as 
– (np-na, offset of a in record of activation 

having a )
44



How to setup access links?

• Code to setup access links is part of 
the calling sequence.

• suppose procedure p at depth np calls 
procedure x at depth nx.

• The code for setting up access links 
depends upon whether or not the 
called procedure is nested within the 
caller.
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How to setup access links?

np < nx
• Called procedure x is nested more deeply 

than p. 
• Therefore, x must be declared in p. 
• The access link in x must point to the access 

link of the activation record of the caller 
just below it in the stack
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How to setup access links?

np ≥ nx
• From scoping rules enclosing procedure at 

the depth 1,2,… ,nx-1 must be same. 
• Follow np-(nx-1) links from the caller.
• We reach the most recent activation of the 

procedure that statically encloses both p 
and x most closely.

• The access link reached is the one to which 
access link in x must point.

• np-(nx-1) can be computed at compile 
time.
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Procedure Parameters

program param (input,output);
procedure b( function h(n:integer): integer);

begin
print (h(2))

end;

procedure c;
var m: integer;
function f(n: integer): integer;

begin
return  m + n

end;

begin
m :=0; b(f)

end;

begin
c

end.
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Procedure Parameters …

• Scope of m does not include procedure b 
• within b, call h(2) activates f
• how is access link for activation of f is set 

up?
• a nested procedure must take its access 

link along with it
• when c passes f:

– it determines access link for f as if it were 
calling f

– this link is passed along with f to b

• When f is activated, this passed access link 
is used to set up the activation record of f

49



Procedure Parameters …
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Displays
• Faster access to non 

locals

• Uses an array of 
pointers to 
activation records

• Non locals at depth i
are in the activation 
record pointed to by 
d[i]
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Setting up Displays

• When a new activation record for a 
procedure at nesting depth i is set up:

• Save the value of d[i] in the new activation 
record

• Set d[i] to point to the new activation 
record

• Just before an activation ends, d[i] is reset 
to the saved value
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Justification for Displays

• Suppose procedure at depth j calls procedure at 
depth i 

• Case j < i then i = j + 1
– called procedure is nested within the caller

– first j elements of display need not be changed

– old value of d[i] is saved and d[i] set to the new 
activation record

• Case j ≥ i 
– enclosing procedure at depths 1…i-1 are same and are 

left un-disturbed

– old value of d[i] is saved and d[i] points to the new 
record

– display is correct as first i-1 records are not disturbed
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Dynamic Scoping: Example 

• Consider the following program

program dynamic (input, output);
var r: real;

procedure show;
begin write(r) end;

procedure small;
var r: real;
begin r := 0.125; show end;

begin
r := 0.25;
show; small; writeln; 
show; small; writeln;

end.
54

// writeln prints a newline character



Example …

• Output under lexical scoping

0.250 0.250

0.250 0.250

• Output under dynamic scoping

0.250 0.125

0.250 0.125

55



Dynamic Scope

• Binding of non local names to storage do 
not change when new activation is set up

• A non local name x in the called activation 
refers to same storage that  it did in the 
calling activation

56



Implementing Dynamic Scope

• Deep Access
– Dispense with access links
– use control links to search into the stack
– term deep access comes from the fact that 

search may go deep into the stack

• Shallow Access
– hold current value of each name in static 

memory
– when a new activation of p occurs a local name 

n in p takes over the storage for n
– previous value of n is saved in the activation 

record of p 
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Parameter Passing

• Call by value
– actual parameters are evaluated and 

their r-values are passed to the called 
procedure

– used in Pascal and C
– formal is treated just like a local name
– caller evaluates the actual parameters 

and places rvalue in the storage for 
formals

– call has no effect on the activation 
record of caller
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Parameter Passing …

• Call by reference (call by address)
– the caller passes a pointer to each 

location of actual parameters

– if actual parameter is a name then 
l-value is passed

– if actual parameter is an expression then 
it is evaluated in a new location and the 
address of that location is passed
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Parameter Passing …

• Copy restore (copy-in copy-out, call by 
value result)

– actual parameters are evaluated, rvalues
are passed by call by value, lvalues are 
determined before the call

– when control returns, the current rvalues
of the formals are copied into lvalues of 
the locals
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Parameter Passing …

• Call by name (used in Algol)
– names are copied

– local names are different from 
names of calling procedure

– Issue:

61

swap(x, y) {
temp = x
x  = y
y = temp

}

swap(i,a[i]):
temp = i
i = a[i]
a[i] = temp



3AC for Procedure Calls

S  call id ( Elist )

Elist Elist , E

Elist E

• Calling sequence

– allocate space for activation record

– evaluate arguments

– establish environment pointers

– save status and return address

– jump to the beginning of the procedure
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Procedure Calls …

Example
• parameters are passed by reference
• storage is statically allocated
• use param statement as place holder 

for the arguments
• called procedure is passed a pointer to 

the first parameter
• pointers to any argument can be 

obtained by using proper offsets
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Procedue Calls

• Generate three address code needed to evaluate 
arguments which are expressions

• Generate a list of param three address 
statements

• Store arguments in a list
S  call id ( Elist )

for each item p on queue do emit('param' p)
emit('call' id.place)

Elist Elist , E
append E.place to the end of queue

Elist E
initialize queue to contain E.place
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Procedure Calls

• Practice Exercise:

How to generate intermediate code for 
parameters passed by value? Passed by 
reference?
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