
Type system

• A type is a set of values and operations
on those values

• A language’s type system specifies
which operations are valid for a type

• The aim of type checking is to ensure
that operations are used on the
variable/expressions of the correct
types

1

Type system …

• Languages can be divided into three
categories with respect to the type:

– “untyped”
•No type checking needs to be done
•Assembly languages

– Statically typed
•All type checking is done at compile time
•Algol class of languages
•Also, called strongly typed

– Dynamically typed
•Type checking is done at run time
•Mostly functional languages like Lisp,

Scheme etc.
2

Type systems …

• Static typing
– Catches most common programming errors at compile

time
– Avoids runtime overhead
– May be restrictive in some situations
– Rapid prototyping may be difficult

• Most code is written using static types languages

• In fact, developers for large/critical system insist
that code be strongly type checked at compile
time even if language is not strongly typed (use of
Lint for C code, code compliance checkers)

3

Type System

• A type system is a collection of rules for
assigning type expressions to various parts
of a program

• Different type systems may be used by
different compilers for the same language

• In Pascal type of an array includes the index
set. Therefore, a function with an array
parameter can only be applied to arrays
with that index set

• Many Pascal compilers allow index set to be
left unspecified when an array is passed as
a parameter

4

Type system and type checking

• If both the operands of arithmetic
operators +, -, x are integers then the
result is of type integer

• The result of unary & operator is a pointer

to the object referred to by the operand.
– If the type of operand is X the type of result is

pointer to X
• Basic types: integer, char, float, boolean
• Sub range type: 1 … 100
• Enumerated type: (violet, indigo, red)
• Constructed type: array, record, pointers,

functions
5

Type expression

• Type of a language construct is denoted by
a type expression

• It is either a basic type OR
• it is formed by applying operators called

type constructor to other type expressions

• A basic type is a type expression. There are
two special basic types:
– type error: error during type checking
– void: no type value

• A type constructor applied to a type
expression is a type expression

6

Type Constructors

• Array: if T is a type expression then array(I, T)
is a type expression denoting the type of an
array with elements of type T and index set I

 int A[10];
A can have type expression array(0 .. 9, integer)

• C does not use this type, but uses
equivalent of int*

• Product: if T1 and T2 are type expressions
then their Cartesian product T1 * T2 is a type
expression
• Pair/tuple

7

Type constructors …
• Records: it applies to a tuple formed from field

names and field types. Consider the declaration
 type row = record

 addr : integer;
 lexeme : array [1 .. 15] of char
 end;

 var table: array [1 .. 10] of row;
• The type row has type expression

 record ((addr * integer) * (lexeme * array(1 .. 15,

char)))

 and type expression of table is array(1 .. 10, row)

8

Type constructors …

• Pointer: if T is a type expression then
pointer(T) is a type expression denoting
type pointer to an object of type T

• Function: function maps domain set to
range set. It is denoted by type expression
D → R
– For example % has type expression

int * int → int
– The type of function int* f(char a, char b) is

denoted by
 char * char pointer(int)

9

Specifications of a type checker

• Consider a language which consists
of a sequence of declarations
followed by a single expression

 P → D ; E

 D → D ; D | id : T
 T → char | integer | T[num] | T*
 E → literal | num | E%E | E [E] | *E

10

Specifications of a type checker …

• A program generated by this grammar is

 key : integer;
 key %1999

• Assume following:
– basic types are char, int, type-error
– all arrays start at 0
– char[256] has type expression
 array(0 .. 255, char)

11

Rules for Symbol Table entry

D id : T addtype(id.entry, T.type)
T char T.type = char
T integer T.type = int
T T1* T.type = pointer(T1.type)
T T1 [num] T.type = array(0..num-1, T1.type)

12

13

Type checking of functions

E. type =
 (E1.type == s → t and E2.type == s)
 ? t : type-error

E E1 (E2)

Type checking for expressions
E → literal E.type = char
E → num E.type = integer
E → id E.type = lookup(id.entry)
E → E1 % E2 E.type = if E1.type == integer and E2.type==integer

 then integer
 else type_error

E → E1[E2] E.type = if E2.type==integer and E1.type==array(s,t)
 then t
 else type_error

E → *E1 E.type = if E1.type==pointer(t)
 then t
 else type_error

14

Type checking for expressions
E → literal E.type = char
E → num E.type = integer
E → id E.type = lookup(id.entry)
E → E1 % E2 E.type = if E1.type == integer and E2.type==integer

 then integer
 else type_error

E → E1[E2] E.type = if E2.type==integer and E1.type==array(s,t)
 then t
 else type_error

E → *E1 E.type = if E1.type==pointer(t)
 then t
 else type_error

15

Type checking for statements

• Statements typically do not have values. Special basic type void can
be assigned to them.

 S → id := E S.Type = if id.type == E.type

 then void
 else type_error

 S → if E then S1 S.Type = if E.type == boolean

 then S1.type
 else type_error

 S → while E do S1 S.Type = if E.type == boolean
 then S1.type
 else type_error

 S → S1 ; S2 S.Type = if S1.type == void
 and S2.type == void
 then void
 else type_error

16

Type checking for statements

• Statements typically do not have values. Special basic type void can
be assigned to them.

 S → id := E S.Type = if id.type == E.type

 then void
 else type_error

 S → if E then S1 S.Type = if E.type == boolean

 then S1.type
 else type_error

 S → while E do S1 S.Type = if E.type == boolean
 then S1.type
 else type_error

 S → S1 ; S2 S.Type = if S1.type == void
 and S2.type == void
 then void
 else type_error

17

Equivalence of Type expression

• Structural equivalence: Two type
expressions are equivalent if
• either these are same basic types
• or these are formed by applying same

constructor to equivalent types
• Name equivalence: types can be given

names
• Two type expressions are equivalent if

they have the same name

18

Function to test structural equivalence

boolean sequiv(type s, type t) :
 If s and t are same basic types
 then return true
 elseif s == array(s1, s2) and t == array(t1, t2)
 then return sequiv(s1, t1) && sequiv(s2, t2)
 elseif s == s1 * s2 and t == t1 * t2
 then return sequiv(s1, t1) && sequiv(s2, t2)
 elseif s == pointer(s1) and t == pointer(t1)
 then return sequiv(s1, t1)
 elseif s == s1s2 and t == t1t2
 then return sequiv(s1,t1) && sequiv(s2,t2)
 else return false;

19

Efficient implementation

• Bit vectors can be used to represent type
expressions. Refer to: A Tour Through the Portable
C Compiler: S. C. Johnson, 1979.

Basic type Encoding

Boolean 0000

Char 0001

Integer 0010

real 0011

Type
constructor

encoding

pointer 01

array 10

function 11

20

Efficient implementation …

Type expression encoding
char 000000 0001

function(char) 000011 0001

pointer(function(char)) 000111 0001

array(pointer(function(char))) 100111 0001

This representation saves space and keeps
track of constructors

21

Basic type Encoding

Boolean 0000

Char 0001

Integer 0010

real 0011

Type constructor Encoding

pointer 01

array 10

function 11

Checking name equivalence

• Consider following declarations
 typedef cell* link;

 link next, last;
 cell *p, *q, *r;

• Do the variables next, last, p, q and r have
identical types ?

• Type expressions have names and names
appear in type expressions.

• Name equivalence views each type name as
a distinct type

22

Name equivalence …

 variable type expression

 next link
 last link
 p pointer(cell)
 q pointer(cell)
 r pointer(cell)

• Under name equivalence next = last and p = q = r ,

however, next ≠ p

• Under structural equivalence all the variables are
of the same type

23

Name equivalence …

• Some compilers allow type expressions to have names.
• However, some compilers assign implicit type names.
• A fresh implicit name is created every time a type

name appears in declarations.
• Consider
 type link = ^ cell;
 var next : link;
 last : link;
 p, q : ^ cell;
 r : ^ cell;
• In this case type expression of q and r are given

different implicit names and therefore, those are not
of the same type

24

Name equivalence …

 The previous code is equivalent to
 type link = ^ cell;
 np = ^ cell;
 nr = ^ cell;
 var next : link;
 last : link;
 p, q: np;
 r : nr;

25

Cycles in representation of types

• Data structures like linked lists are defined
recursively

• Implemented through structures which contain
pointers to structure

• Consider following code
 type link = ^ cell;
 cell = record
 info : integer;
 next : link
 end;
• The type name cell is defined in terms of link and

link is defined in terms of cell (recursive
definitions)

26

Cycles in representation of …

• Recursively defined type names
can be substituted by definitions

• However, it introduces cycles into
the type graph

27

record

X X

info integer next pointer

record

X X

info integer next pointer

cell

link = ^ cell;
 cell = record
 info : integer;
 next : link
 end;

Cycles in representation of …

• C uses structural equivalence for all types
except records (struct)

• It uses the acyclic structure of the type graph
• Type names must be declared before they

are used
– However, allow pointers to undeclared record

types
– All potential cycles are due to pointers to records

• Name of a record is part of its type
– Testing for structural equivalence stops when a

record constructor is reached

28

Type conversion

• Consider expression like x + i where x is of
type real and i is of type integer

• Internal representations of integers and
reals are different in a computer
– different machine instructions are used for

operations on integers and reals
• The compiler has to convert both the

operands to the same type
• Language definition specifies what

conversions are necessary.

29

Type conversion …
• Usually conversion is to the type of the left

hand side
• Type checker is used to insert conversion

operations:
 x + i
 x real+ inttoreal(i)
• Type conversion is called implicit/coercion if

done by compiler.
• It is limited to the situations where no

information is lost
• Conversions are explicit if programmer has

to write something to cause conversion

30

Type checking for expressions

E → num E.type = int
E → num.num E.type = real
E → id E.type = lookup(id.entry)

E → E1 op E2 E.type =
 if E1.type == int && E2.type == int
 then int
 elif E1.type == int && E2.type == real
 then real
 elif E1.type == real && E2.type == int
 then real
 elif E1.type == real && E2.type==real
 then real

31

Overloaded functions and operators

• Overloaded symbol has different meaning
depending upon the context

• In math, + is overloaded; used for integer,
real, complex, matrices

• In Ada, () is overloaded; used for array,
function call, type conversion

• Overloading is resolved when a unique
meaning for an occurrence of a symbol is
determined

32

Overloaded functions and operators

• In Ada standard interpretation of * is
multiplication of integers

• However, it may be overloaded by saying
function “*” (i, j: integer) return complex;
function “*” (i, j: complex) return complex;
• Possible type expression for “ * ” include:
 integer x integer → integer
 integer x integer → complex
 complex x complex → complex

33

Overloaded function resolution

• Suppose only possible type for 2, 3 and
5 is integer

• Z is a complex variable

• 3*5 is either integer or complex
depending upon the context
– in 2*(3*5): 3*5 is integer because 2 is

integer
– in Z*(3*5) : 3*5 is complex because Z

is complex
34

Type resolution
• Try all possible types of each overloaded

function (possible but brute force method!)
• Keep track of all possible types
• Discard invalid possibilities
• At the end, check if there is a single unique

type
• Overloading can be resolved in two passes:

– Bottom up: compute set of all possible
types for each expression

– Top down: narrow set of possible types
based on what could be used in an
expression

35

Determining set of possible types

E’ E E’.types = E.types
E id E.types = lookup(id)
E E1(E2) E.types =
 {t |∃s in E2.types && st is in E1.types}

36

E

* E E

3 5

{ixii
ixic

cxcc} {i} {i}

{i} {i}

{i,c}

Narrowing the set of possible types

• Ada requires a complete expression to
have a unique type

• Given a unique type from the context
we can narrow down the type choices
for each expression

• If this process does not result in a
unique type for each sub expression
then a type error is declared for the
expression

37

Narrowing the set of …

E’ E E’.types = E.types
 E.unique = if E’.types=={t} then t
 else type_error
E id E.types = lookup(id)
E E1(E2) E.types =
 { t | ∃s in E2.types && st is in E1.types}
 t = E.unique

 S = {s | s∈E2.types and (st)∈E1.types}
 E2.unique = if S=={s} then s else type_error
 E1.unique = if S=={s} then st
 else type_error

38

Narrowing the set of …

E’ E E’.types = E.types
 E.unique = if E’.types=={t} then t
 else type_error
E id E.types = lookup(id)
E E1(E2) E.types =
 { t | ∃s in E2.types && st is in E1.types}
 t = E.unique

 S = {s | s∈E2.types and (st)∈E1.types}
 E2.unique = if S=={s} then s else type_error
 E1.unique = if S=={s} then st
 else type_error

39

Polymorphic functions
• A function can be invoked with arguments of

different types

• Built in operators for indexing arrays, applying
functions, and manipulating pointers are usually
polymorphic

• Extend type expressions to include expressions
with type variables

• Facilitate the implementation of algorithms that
manipulate data structures (regardless of types of
elements)
– Determine length of the list without knowing types of

the elements

40

Polymorphic functions …
• Strongly typed languages can make programming

very tedious
• Consider identity function written in a language

like Pascal
 function identity (x: integer): integer;
• This function is the identity on integers: int int
• If we want to write identity function on char then

we must write
 function identity (x: char): char;
• This is the same code; only types have changed.

However, in Pascal a new identity function must
be written for each type

• Templates solve this problem somewhat, for end-
users
• For compiler, multiple definitions still present!

41

Type variables

• Variables can be used in type expressions to
represent unknown types

• Important use: check consistent use of an
identifier in a language that does not require
identifiers to be declared

• An inconsistent use is reported as an error
• If the variable is always used as of the same

type then the use is consistent and has lead to
type inference

• Type inference: determine the type of a
variable/language construct from the way it is
used
– Infer type of a function from its body

42

function deref(p) { return *p; }

• Initially, nothing is known about type of p
– Represent it by a type variable

• Operator * takes pointer to an object and
returns the object

• Therefore, p must be pointer to an object of
unknown type α
– If type of p is represented by β then

β=pointer(α)
– Expression *p has type α

• Type expression for function deref is
 for any type α: pointer(α) α
• For identity function, the type expression is
 for any type α: α α

43

Reading assignment

• Rest of Section 6.6 and Section 6.7 of Old
Dragonbook [Aho, Sethi and Ullman]

44

