
Type system 

• A type is a set of values and operations 
on those values 

• A language’s type system specifies 
which operations are valid for a type  

• The aim of type checking is to ensure 
that operations are used on the 
variable/expressions of the correct 
types 
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Type system … 

• Languages can be divided into three 
categories with respect to the type: 

– “untyped” 
•No type checking needs to be done 
•Assembly languages 

– Statically typed 
•All type checking is done at compile time 
•Algol class of languages 
•Also, called strongly typed 

– Dynamically typed 
•Type checking is done at run time 
•Mostly functional languages like Lisp, 

Scheme etc. 
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Type systems … 

• Static typing 
– Catches most common programming errors at compile 

time 
– Avoids runtime overhead 
– May be restrictive in some situations 
– Rapid prototyping may be difficult 

 

• Most code is written using static types languages 
 

• In fact, developers for large/critical system insist 
that code be strongly type checked at compile 
time even if language is not strongly typed (use of 
Lint for C code, code compliance checkers) 
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Type System 

• A type system is a collection of rules for 
assigning type expressions to various parts 
of a program 

• Different type systems may be used by 
different compilers for the same language 

• In Pascal type of an array includes the index 
set. Therefore, a function with an array 
parameter can only be applied to arrays 
with that index set 

• Many Pascal compilers allow index set to be 
left unspecified when an array is passed as 
a parameter 
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Type system and type checking 

• If both the operands of arithmetic 
operators +, -, x  are  integers then the 
result is of type integer 

 
• The result of unary & operator is a pointer 

to the object referred to by  the operand.  
– If the type of operand is X the type of result is 

pointer to X  
• Basic types: integer, char, float, boolean 
• Sub range type: 1 … 100 
• Enumerated type: (violet, indigo, red) 
• Constructed type: array, record, pointers, 

functions 
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Type expression 

• Type of a language construct is denoted by 
a type expression 

• It is either a basic type OR  
• it is formed by applying operators called 

type constructor to other type expressions 
 

• A basic type is a type expression. There are 
two special basic types: 
– type error: error during type checking 
– void: no type value 

• A type constructor applied to a type 
expression is a type expression 
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Type Constructors 

• Array: if T is a type expression then array(I, T) 
is a type expression denoting the type of an 
array with elements of type T and index set I 

 

    int A[10]; 
A can have  type expression array(0 .. 9, integer) 

• C does not use this type, but uses 
equivalent of  int* 

 

• Product: if T1 and T2 are type expressions 
then their Cartesian product T1 * T2 is a type 
expression  
• Pair/tuple 
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Type constructors …  
• Records: it applies to a tuple formed from field 

names and field types. Consider the declaration
 type row = record 

   addr :  integer;  
   lexeme :  array [1 .. 15] of char 
            end; 
  
 var table: array [1 .. 10] of row;  
•  The type row has type expression 
  
 record ((addr * integer) *  (lexeme * array(1 .. 15, 

char)))  
  
 and type expression of table is array(1 .. 10, row) 
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Type constructors … 

• Pointer: if T is a type expression then 
pointer(T) is a type  expression denoting 
type pointer to an object of type T 

• Function: function maps domain set to 
range set. It is denoted by type expression 
D → R 
– For example % has type expression                      

int * int → int 
– The type of function int* f(char a, char b) is 

denoted by 
 char * char  pointer(int) 
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Specifications of a type checker 

• Consider a language which consists 
of a sequence of declarations 
followed by a single expression  

 P → D ; E  

 D → D ; D | id : T  
 T → char | integer | T[num]  |  T*  
 E → literal | num | E%E | E [E] | *E 
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Specifications of a type checker … 

• A program generated by this grammar is 
  
 key : integer; 
    key %1999 
 

• Assume following: 
– basic types are char, int, type-error  
– all arrays start at 0  
– char[256] has type expression  
 array(0 .. 255, char)   
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Rules for Symbol Table entry 

D  id : T  addtype(id.entry, T.type) 
T  char  T.type = char 
T  integer  T.type = int 
T  T1*  T.type = pointer(T1.type) 
T  T1 [num]  T.type = array(0..num-1, T1.type) 
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Type checking of functions 

E. type =  
    (E1.type == s → t and  E2.type == s) 
    ? t  : type-error 

E  E1 (E2) 



Type checking for expressions 
E → literal E.type = char 
E → num E.type = integer 
E → id   E.type = lookup(id.entry) 
E →  E1 % E2 E.type = if E1.type == integer and E2.type==integer  

   then integer     
   else type_error 

E → E1[E2]  E.type = if E2.type==integer and E1.type==array(s,t)  
   then t      
   else type_error 

E → *E1  E.type = if E1.type==pointer(t)    
   then  t       
                  else type_error 
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Type checking for expressions 
E → literal E.type = char 
E → num E.type = integer 
E → id   E.type = lookup(id.entry) 
E →  E1 % E2 E.type = if E1.type == integer and E2.type==integer  

   then integer     
   else type_error 

E → E1[E2]  E.type = if E2.type==integer and E1.type==array(s,t)  
   then t      
   else type_error 

E → *E1  E.type = if E1.type==pointer(t)    
   then  t       
                  else type_error 
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Type checking for statements 

• Statements typically do  not have values. Special basic type void can 
be assigned to them. 

  
 S → id := E   S.Type = if id.type == E.type     

    then void    
    else type_error 

  
 S → if E then S1  S.Type = if E.type == boolean    

    then S1.type    
    else type_error 

 S → while E do S1  S.Type = if E.type == boolean    
    then S1.type    
    else type_error 

 S → S1 ; S2   S.Type = if S1.type == void    
    and S2.type == void   
    then void    
    else type_error 
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Type checking for statements 

• Statements typically do  not have values. Special basic type void can 
be assigned to them. 

  
 S → id := E   S.Type = if id.type == E.type     

    then void    
    else type_error 

  
 S → if E then S1  S.Type = if E.type == boolean    

    then S1.type    
    else type_error 

 S → while E do S1  S.Type = if E.type == boolean    
    then S1.type    
    else type_error 

 S → S1 ; S2   S.Type = if S1.type == void    
    and S2.type == void   
    then void    
    else type_error 
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Equivalence of Type expression 

• Structural equivalence: Two type 
expressions are equivalent if 
• either these are same basic types 
• or these are formed by applying same 

constructor to equivalent types 
• Name equivalence: types can be given 

names 
• Two type expressions are equivalent if 

they have the same name 
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Function to test structural equivalence 
  
boolean sequiv(type s, type t) :  
   If s and t are same basic types 
      then return true 
         elseif s == array(s1, s2) and t == array(t1, t2)  
            then return sequiv(s1, t1) && sequiv(s2, t2) 
               elseif s == s1 * s2  and  t == t1 * t2 
                  then return sequiv(s1, t1) && sequiv(s2, t2) 
                     elseif s == pointer(s1)  and  t == pointer(t1)  
                        then return sequiv(s1, t1) 
                            elseif s == s1s2  and  t == t1t2   
                                then return sequiv(s1,t1)  &&  sequiv(s2,t2) 
                                    else return false; 
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Efficient implementation 

• Bit vectors can be used to represent type 
expressions. Refer to: A Tour Through the Portable 
C Compiler: S. C. Johnson, 1979. 

Basic type Encoding 

Boolean 0000 

Char 0001 

Integer 0010 

real 0011 

Type 
constructor 

encoding 

pointer 01 

array 10 

function 11 
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Efficient implementation … 

Type expression   encoding 
char         000000 0001 

function( char )                             000011 0001 

pointer( function( char ) )               000111 0001 

array( pointer(  function( char) ) ) 100111 0001 

This representation saves space and keeps 
track of constructors 
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Basic type Encoding 

Boolean 0000 

Char 0001 

Integer 0010 

real 0011 

Type constructor Encoding 

pointer 01 

array 10 

function 11 



Checking name equivalence 

• Consider following declarations 
  typedef cell* link;    

 link next, last;            
 cell  *p, *q, *r; 

• Do the variables next, last, p, q and r have 
identical types ? 

• Type expressions have names and names 
appear in type expressions. 

• Name equivalence views each type name as 
a distinct type 
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Name equivalence … 

 variable  type expression 

 next   link 
 last    link 
 p   pointer(cell) 
 q   pointer(cell) 
 r   pointer(cell) 

  
• Under name equivalence next = last and p = q = r , 

however, next ≠ p 
 

• Under structural equivalence all the variables are 
of the same type 
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Name equivalence … 

• Some compilers allow type expressions to have names.  
• However, some compilers assign implicit type names. 
• A fresh implicit name is created every time a type 

name appears in declarations. 
• Consider 
 type  link = ^ cell;  
 var next  :  link; 
  last  :  link; 
  p, q  :  ^ cell; 
  r       :  ^ cell;  
• In this case type expression of q and r are given 

different implicit names and therefore, those are not 
of the same type 
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Name equivalence … 

 The previous code is equivalent to 
 type link  =  ^ cell; 
  np = ^ cell;  
  nr = ^ cell; 
 var next : link; 
  last : link;   
  p, q: np;        
  r : nr; 
  

25 



Cycles in representation of types 

• Data structures like linked lists are defined 
recursively 

• Implemented through structures which contain 
pointers to structure 

• Consider following code 
 type link = ^ cell; 
  cell = record  
     info : integer; 
     next : link 
            end; 
• The type name cell is defined in terms of link and 

link is defined in terms of cell (recursive 
definitions) 
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Cycles in representation of … 

• Recursively defined type names 
can be substituted  by definitions 

• However, it introduces cycles into 
the type graph 
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record 

X X 

info integer next pointer 

record 

X X 

info integer next pointer 

cell 

link = ^ cell; 
 cell = record  
               info : integer; 
          next : link 
             end; 



Cycles in representation of … 

• C uses structural equivalence for all types 
except records (struct)  

• It uses the acyclic structure of the type graph 
• Type names must be declared before they 

are used 
– However, allow pointers to undeclared record 

types 
– All potential cycles are due to pointers to records 

• Name of a record is part of its type 
– Testing for structural equivalence stops when a 

record constructor is reached 
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Type conversion 

• Consider expression like x + i where x is of 
type real and i is of type integer 

• Internal representations of integers and 
reals are different in a computer 
– different machine instructions are used for 

operations on integers and reals 
• The compiler has to convert both the 

operands to the same type 
• Language definition specifies what 

conversions are necessary.  
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Type conversion … 
• Usually conversion is to the type of the left 

hand side 
• Type checker is used to insert conversion 

operations: 
  x + i  
            x  real+  inttoreal(i) 
• Type conversion is called implicit/coercion if 

done by compiler.  
• It is limited to the situations where no 

information is lost 
• Conversions are explicit if programmer has 

to write something to cause conversion 
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Type checking for expressions 

E  →  num   E.type  =  int  
E  →  num.num  E.type  =  real  
E  →  id  E.type  =  lookup( id.entry ) 
 
E  →  E1 op E2       E.type  =  
                                     if E1.type == int  && E2.type == int 
       then  int 
       elif E1.type == int  &&  E2.type == real 
       then  real 
       elif E1.type == real  &&  E2.type == int 
       then  real 
       elif E1.type == real  &&  E2.type==real 
       then  real 
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Overloaded functions and operators 

• Overloaded symbol has different meaning 
depending upon the context     

• In math, + is overloaded; used for integer, 
real, complex, matrices 

• In Ada, () is overloaded; used for array, 
function call, type conversion  

• Overloading is resolved when a unique 
meaning for an occurrence of a symbol is 
determined 
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Overloaded functions and operators 

• In Ada standard interpretation of  *  is 
multiplication of integers 

• However, it may be overloaded by saying    
function  “*” (i, j: integer)  return complex;  
function  “*” (i, j: complex) return complex; 
• Possible type expression for  “ * ”  include:  
 integer  x  integer →  integer  
    integer  x  integer →  complex      
    complex  x  complex →  complex 
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Overloaded function resolution 

• Suppose only possible type for  2, 3 and 
5  is integer 

• Z is a complex variable 

• 3*5 is either integer or complex 
depending upon the context 
– in  2*(3*5): 3*5 is integer because 2 is 

integer            
– in  Z*(3*5) : 3*5 is complex because  Z 

is complex   
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Type resolution 
• Try all possible types of each overloaded 

function (possible but brute force method!) 
• Keep track of all possible types   
• Discard invalid possibilities 
• At the end, check if there is a single unique 

type 
• Overloading can be resolved in two passes: 

– Bottom up: compute set of all possible 
types for each expression 

– Top down: narrow set of possible types 
based on what could be used in an 
expression 
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Determining set of possible types 

E’  E  E’.types = E.types 
E  id  E.types = lookup(id) 
E  E1(E2)  E.types =  
                       {t |∃s in E2.types && st is in E1.types} 
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Narrowing the set of possible types 

• Ada requires a complete expression to 
have a unique type 

• Given a unique type from the context 
we can narrow down the type choices 
for each expression 

• If this process does not result in a 
unique type for each sub expression 
then a type error is declared for the 
expression 
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Narrowing the set of … 

E’  E  E’.types = E.types 
   E.unique = if E’.types=={t} then t  
            else type_error 
E  id  E.types = lookup(id) 
E  E1(E2) E.types = 
                          { t | ∃s in E2.types && st is in E1.types} 
   t = E.unique 

   S = {s | s∈E2.types and (st)∈E1.types} 
   E2.unique = if S=={s} then s else type_error 
   E1.unique = if S=={s} then st  
                                            else type_error 
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Narrowing the set of … 

E’  E  E’.types = E.types 
   E.unique = if E’.types=={t} then t  
            else type_error 
E  id  E.types = lookup(id) 
E  E1(E2) E.types = 
                          { t | ∃s in E2.types && st is in E1.types} 
   t = E.unique 

   S = {s | s∈E2.types and (st)∈E1.types} 
   E2.unique = if S=={s} then s else type_error 
   E1.unique = if S=={s} then st  
                                            else type_error 
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Polymorphic functions 
• A function can be invoked with arguments of 

different types 
 

• Built in operators for indexing arrays, applying 
functions, and manipulating pointers are usually 
polymorphic  
 

• Extend type expressions to include expressions 
with type variables 

 

• Facilitate the implementation of algorithms that 
manipulate data structures (regardless of types of 
elements) 
– Determine length of the list without knowing types of 

the elements 
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Polymorphic functions … 
• Strongly typed languages can make programming 

very tedious 
• Consider identity function written in a language 

like Pascal 
 function identity (x: integer): integer; 
• This function is the identity on integers: int  int 
• If we want to write identity function on char then 

we must write 
 function identity (x: char): char; 
• This is the same code; only types have changed. 

However, in Pascal a new identity function must 
be written for each type 

• Templates solve this problem somewhat, for end-
users 
• For compiler, multiple definitions still present!  
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Type variables 

• Variables can be used in type expressions to 
represent unknown types 

• Important use: check consistent use of an 
identifier in a language that does not require 
identifiers to be declared  

• An inconsistent use is reported as an error 
• If the variable is always used as of the same 

type then the use is consistent and has lead to 
type inference 

• Type inference: determine the type of a 
variable/language construct from the way it is 
used 
– Infer type of a function from its body 
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function deref(p) { return *p; } 
  

• Initially, nothing is known about type of p 
– Represent it by a type variable 

• Operator * takes pointer to an object and 
returns the object 

• Therefore, p must be pointer to an object of 
unknown type α 
– If type of p is represented by β then 

β=pointer(α) 
– Expression *p has type α 

• Type expression for function deref is 
 for any type α:   pointer(α)  α 
• For identity function, the type expression is           
    for any type α:   α  α 
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Reading assignment 

• Rest of Section 6.6 and Section 6.7 of Old 
Dragonbook [Aho, Sethi and Ullman] 
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