
Abstract Syntax Tree 

• Condensed form of parse tree, 
• useful for representing language constructs. 
• The production S → if B then s1 else s2  
 may appear as 
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Abstract Syntax tree … 
• Chain of single productions may be collapsed, and 

operators move to the parent nodes 
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Constructing Abstract Syntax Tree  
for expression 

• Each node can be represented as a 
record 

• operators: one field for operator, 
remaining fields ptrs to operands 

  mknode(op,left,right ) 
• identifier: one field with label id and 

another ptr to symbol table 
  mkleaf(id,entry) 
• number: one field with label num and 

another to keep the value of the number 
  mkleaf(num,val) 
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Example  

 the following 
sequence of function 
calls creates a parse 
tree for a- 4 + c 

  

 P1 = mkleaf(id, entry.a) 

 P2 = mkleaf(num, 4) 
 P3 = mknode(-, P1, P2) 
 P4 = mkleaf(id, entry.c) 
 P5 = mknode(+, P3, P4) 
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A syntax directed definition for 
constructing syntax tree 

E  → E1 + T  E.ptr = mknode(+, E1.ptr, T.ptr) 
E  → T   E.ptr = T.ptr 
T  → T1 * F  T.ptr := mknode(*, T1.ptr, F.ptr) 
T  → F   T.ptr := F.ptr 
F  → (E)           F.ptr := E.ptr 
F  → id   F.ptr := mkleaf(id, entry.id) 
F  → num   F.ptr := mkleaf(num,val) 

5 



DAG for Expressions 
 Expression a + a * ( b – c ) + ( b - c ) * d 
 make a leaf or node if not present,  
 otherwise return pointer to the existing node 
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P1 = makeleaf(id,a) 
P2 = makeleaf(id,a) 
P3 = makeleaf(id,b) 
P4 = makeleaf(id,c) 
P5 = makenode(-,P3,P4) 
P6 = makenode(*,P2,P5) 
P7 = makenode(+,P1,P6) 
P8 = makeleaf(id,b) 
P9 = makeleaf(id,c) 
P10 = makenode(-,P8,P9) 
P11 = makeleaf(id,d)  
P12 = makenode(*,P10,P11)  
P13 = makenode(+,P7,P12) 
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Bottom-up evaluation of S-attributed 
definitions 

• Can be evaluated while parsing 
• Whenever reduction is made, value of 

new synthesized attribute is computed 
from the attributes on the stack 

• Extend stack to hold the values also 
• The current top of stack is indicated by 

top pointer 
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• Suppose semantic rule  
A.a = f(X.x, Y.y, Z.z)  

   is associated with production 
 A → XYZ 

• Before reducing XYZ to A, value of Z is in 
val(top), value of Y is in val(top-1) and 
value of X is in val(top-2) 

• If symbol has no attribute then the 
entry is undefined 

• After the reduction, top is decremented 
by 2 and state covering A is put in 
val(top) 
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Bottom-up evaluation of S-attributed 
definitions 



L  E $  Print (E.val) 
E  E + T   E.val = E.val + T.val 
E  T   E.val = T.val 
T  T * F   T.val = T.val * F.val 
T  F   T.val = F.val 
F  (E)   F.val = E.val 
F  digit   F.val = digit.lexval 
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Example: desk calculator 



Example: desk calculator 
L → E$   print(val(top)) 
E → E + T   val(ntop) = val(top-2) + val(top) 
E → T   
T → T * F   val(ntop) = val(top-2) * val(top) 
T → F 
F → (E)   val(ntop) = val(top-1) 
F → digit  
 
Before reduction         ntop = top - r +1 
After code reduction  top = ntop 
r is the #symbols on RHS 
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INPUT  STATE  Val  PROD 
3*5+4$  
*5+4$  digit  3 
*5+4$  F  3  F → digit 
*5+4$  T  3  T → F 
5+4$   T*  3 □    
+4$   T*digit 3 □ 5   
+4$   T*F  3 □ 5  F → digit 
+4$   T  15  T → T * F 
+4$   E  15  E →  T 
4$   E+  15 □     
$    E+digit 15 □ 4  
$     E+F  15 □ 4 F → digit 
$    E+T  15 □ 4 T → F 
$    E  19  E → E  +T 
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E → E + T   val(ntop) = val(top-2) + val(top) 
 
In YACC 
E → E + T   $$ = $1 + $3 
 
$$ maps to val[top – r  + 1] 
$k maps to val[top – r  + k] 
r=#symbols on RHS ( here 3) 
$$ = $1 is the default action in YACC 

YACC Terminology 



L-attributed definitions 

• When translation takes place during 
parsing, order of evaluation is linked to 
the order in which nodes are created 

• In S-attributed definitions parent’s 
attribute evaluated after child’s. 

• A natural order in both top-down and 
bottom-up parsing is depth first-order 

• L-attributed definition: where attributes 
can be evaluated in depth-first order 
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L attributed definitions … 

• A syntax directed definition is L-
attributed if each inherited attribute of 
Xj (1 ≤ j ≤ n) at the right hand side of 
A→X1 X2…Xn depends only on 
– Attributes of symbols X1 X2…Xj-1 and  
– Inherited attribute of A 

 
• Examples (i inherited, s synthesized)  
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A → LM L.i = f1(A.i) 
   M.i = f2(L.s) 
   A.s = f3(M.s) 

 A → QR R.i = f4(A.i) 
   Q.i = f5(R.s) 
   A.s = f6(Q.s) 



Translation schemes 

• A CFG where semantic actions occur 
within the rhs of production 

 
• Example: A translation scheme to map 

infix to postfix 
  E→ T R 
 R→ addop T {print(addop)} R | ε 
 T→ num {print(num)} 
 addop → + | – 
 

16 
Exercise: Create Parse Tree for  9 – 5 + 2 

 R → addop T R | ε  



Parse tree for 9-5+2 
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• Assume actions are terminal symbols 
• Perform depth first order traversal to 

obtain 9 5 – 2 + 
 

• When designing translation scheme, 
ensure attribute value is available 
when referred to 

• In case of synthesized attribute it is 
trivial (why ?) 
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Evaluation of Translation Schemes 



• An inherited attribute for a symbol on RHS 
of a production must be computed in an 
action before that symbol 

  S → A1 A2 {A1.in = 1,A2.in = 2} 
 A → a {print(A.in)} 
  
 
 
depth first order traversal gives error (undef) 
• A synthesized attribute for the non terminal 

on the LHS can be computed after all 
attributes it references, have been 
computed. The action normally should be 
placed at the end of RHS. 
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Bottom up evaluation of inherited 
attributes 

• Remove embedded actions from 
translation scheme 

• Make transformation so that 
embedded actions occur only at the 
ends of their productions 

• Replace each action by a distinct 
marker non terminal M and attach 
action at end of M → ε 
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 E  T R 
 R  + T {print (+)} R 
 R  - T {print (-)} R 
 R  Є 
 T  num {print(num.val)} 
  
 transforms to  
  
 E → T R  
 R → + T M R  
 R → - T N R 
   R → Є 
 T → num {print(num.val)} 
 M → Є  {print(+)} 
 N → Є  {print(-)} 
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Inheriting attribute on parser stacks 

• bottom up parser reduces rhs of A → 
XY by removing XY from stack and 
putting A on the stack 

  
• synthesized attributes of Xs can be 

inherited by Y by using the copy rule 
Y.i=X.s 
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Inherited Attributes: SDD 

D  T L   L.in = T.type 
 
T  real   T.type = real 
 
T  int   T.type = int 
 
L  L1, id   L1.in = L.in; 
                           addtype(id.entry, L.in) 
 
L  id   addtype (id.entry,L.in) 
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Exercise: Convert to Translation Scheme 



D  T {L.in = T.type}  L 
 
T  int  {T.type = integer} 
T real {T.type = real} 
 
L → {L1.in =L.in} L1,id {addtype(id.entry,Lin)} 
 
L → id {addtype(id.entry,Lin)} 
 
Example: take string        real p,q,r 
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Inherited Attributes: Translation 
Scheme 



State stack INPUT PRODUCTION 
    real p,q,r 
real   p,q,r 
T    p,q,r  T → real 
Tp   ,q,r 
TL   ,q,r  L → id 
TL,   q,r 
TL,q   ,r 
TL   ,r  L → L,id 
TL,   r 
TL,r   - 
TL   -  L → L,id 
D    -  D →TL 
 Every time a string is reduced to L, T.val is 

just below it on the stack 32 



Example … 
• Every time a  reduction to L is made value of T 

type is just below it 
• Use the fact that T.val (type information) is at a 

known place in the stack 
• When production L  id is applied, id.entry is at 

the top of the  stack and T.type  is just below it, 
therefore, 

addtype(id.entry,L.in)   
                                        addtype(val[top], val[top-1]) 
• Similarly when production L  L1 , id is applied 

id.entry is at the top of the stack and T.type is 
three places below it, therefore, 

addtype(id.entry, L.in)   
                                          addtype(val[top],val[top-3]) 33 



Example … 

Therefore, the translation scheme becomes 
 
D  T L 
T  int  val[top] =integer 
T  real  val[top] =real 
 
L  L,id  addtype(val[top], val[top-3]) 
L  id  addtype(val[top], val[top-1]) 
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Simulating the evaluation of 
inherited attributes 

• The scheme works only if grammar allows 
position of attribute to be predicted.  

• Consider the grammar 
 S  aAC  Ci = As 
 S  bABC  Ci = As 
 C  c  Cs = g(Ci) 
• C inherits As 
• there may or may not be a B between A 

and C on the stack when reduction by rule 
Cc takes place 

• When reduction by C  c is performed the 
value of Ci is either in [top-1] or [top-2] 

35 



Simulating the evaluation … 

• Insert a marker M just  before C in the 
second rule and change rules to 

  
 S  aAC   Ci = As 
 S  bABMC  Mi = As; Ci = Ms 
 C  c   Cs = g(Ci) 
 M  ε   Ms = Mi 

  
• When production M  ε is applied we have 

Ms = Mi = As 
  
• Therefore value of Ci is always at val[top-1] 
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Simulating the evaluation … 
• Markers can also be used to simulate 

rules that are not copy rules 
  
 S  aAC   Ci = f(A.s) 
  
• using a marker 
  
 S  aANC  Ni= As; Ci = Ns 
 N  ε    Ns = f(Ni) 
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General algorithm 
• Algorithm: Bottom up parsing and translation with 

inherited attributes 
• Input: L attributed definitions 
• Output: A bottom up parser 
  
• Assume every non terminal has one inherited attribute 

and every grammar symbol has a synthesized attribute 
  
• For every production A  X1… Xn introduce n markers  

M1….Mn and replace the production by 
   A  M1 X1 ….. Mn Xn 
   M1 … Mn  Є 
  
• Synthesized attribute Xj,s goes into the value entry of Xj 
  
• Inherited attribute Xj,i goes into the  value entry of Mj 
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Algorithm … 

• If the  reduction is to a marker Mj and 
the marker belongs to a production 

  
 A  M1 X1… MnXn then 
  
 Ai  is in position top-2j+2 
 X1.i is in position top-2j+3 
 X1.s is in position top-2j+4 
  
• If reduction is to a non terminal A by 

production A  M1 X1… MnXn  
 then compute As and push on the 

stack 
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Space for attributes at compile 
time 

• Lifetime of an attribute begins when it is first 
computed 

  
• Lifetime of an attribute ends when all the 

attributes depending on it, have been computed 

  
• Space can be conserved by assigning space  for an 

attribute only during its lifetime 
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Example 

• Consider following definition 

  
 D T L  L.in := T.type 

 T  real  T.type := real 
 T  int  T.type := int 
 L  L1,I  L1.in :=L.in; I.in=L.in 

 L  I  I.in = L.in 

 I  I1[num] I1.in=array(numeral, I.in) 
 I  id  addtype(id.entry,I.in) 
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Consider string int x[3], y[5] 
its parse tree and dependence graph 
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Resource requirement 
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1 2 3 4 5 6 7 8 9 

Allocate resources using life time information 

R1 R1 R1 R1 R2 R3 R2 R2 R1 

Allocate resources using life time and copy information 

R1 =R1 =R1 R2 R2 =R1 =R1 R2 R1 



Space for attributes at compiler 
Construction time 

• Attributes can be held on a single stack. However, lot of 
attributes are copies of other attributes 

  
• For a  rule like A B C stack grows up to a height of five 

(assuming each symbol has one inherited and one 
synthesized attribute) 

  
• Just  before reduction by the rule A B C the stack 

contains          I(A) I(B) S(B) I (C) S(C) 
  
• After  reduction the stack contains I(A) S(A) 
•   
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Example 
• Consider rule B B1 B2 with inherited attribute ps and 

synthesized attribute ht 
  
• The parse tree for this string and a snapshot of the stack at 

each node appears as 
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Example … 

• However, if different stacks are maintained for the 
inherited  and synthesized attributes, the stacks will 
normally be smaller 
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