Semantic Analysis

e Static checking

I
— Type checking \
— Control flow checking boolean /

— Unigueness checking = nt

— Name checks /“\ / \
L b 0 a b

e Disambiguate g
overloaded operators
e Type coercion

e Error reporting

nt int int



Beyond syntax analysis

e Parser cannot catch all the program errors

e There is a level of correctness that is deeper
than syntax analysis

e Some language features cannot be
modeled using context free grammar

formalism

— Whether an identifier has been declared
before use

— This problem is of identifying a language
{waw | w e 2*}

— This language is not context free



Beyond syntax ...

e Examples
string x; inty;
V=X+3
the use of x could be a type error
int a, b;
a=b+c
c is not declared

e An identifier may refer to different variables in
different parts of the program

e An identifier may be usable in one part of the
program but not another



Compiler needs to know?

e \Whether a variable has been declared?

e Are there variables which have not been
declared?

e What is the type of the variable?

e Whether a variable is a scalar, an array, or a
function?

e What declaration of the variable does each
reference use?

e If an expression is type consistent?

e If an array use like A[i,j, k] is consistent with
the declaration? Does it have three
dimensions?



e How many arguments does a function
take?

e Are all invocations of a function
consistent with the declaration?

e |f an operator/function is overloaded,
which function is being invoked?

e Inheritance relationship

e Classes not multiply defined

e Methods in a class are not multiply
defined

e The exact requirements depend upon
the language
5



How to answer these questions?

e These issues are part of semantic analysis

phase

e Answers to these questions depend upon
values like type information, number of
parameters etc.

e Compiler will have to do some computation
to arrive at answers

e The information required by computations
may be non local in some cases



How to ... ?

e Use formal methods
— Context sensitive grammars
— Extended attribute grammars

e Use ad-hoc techniques

— Symbol table
— Ad-hoc code

e Something in between !!!
— Use attributes
— Do analysis along with parsing
— Use code for attribute value computation
— However, code is developed systematically

7



Why attributes ?

e For lexical analysis and syntax analysis
formal techniques were used.

e However, we still had code in form of
actions along with regular expressions
and context free grammar

e The attribute grammar formalism is

Important
— Howeuver, it is very difficult to implement
— But makes many points clear
— Makes “ad-hoc” code more organized
— Helps in doing non local computations
3



Attribute Grammar Framework

e Generalization of CFG where each
grammar symbol has an associated set
of attributes

e VValues of attributes are computed by
semantic rules



Attribute Grammar Framework

e Two notations for associating semantic
rules with productions

e Syntax directed definition
e high level specifications
e hides implementation details
e explicit order of evaluation is not
specified
eTranslation scheme
e indicate order in which semantic rules are
to be evaluated
e allow some implementation details to be
shown

10



Attribute Grammar Framework

e Conceptually both:
— parse input token stream
— build parse tree
—traverse the parse tree to evaluate the
semantic rules at the parse tree nodes

e Evaluation may:
— save information in the symbol table
— issue error messages
— generate code
— perform any other activity

11



Example

e Consider a grammar for signed binary
numbers

number =2 sign list

sign 2>+ | -
list -2 list bit | bit
bit 201

e Build attribute grammar that
annotates number with the value it
represents

12



Example

e Associate attributes with grammar

symbols

symbol
number
sign

list

bit

attributes
value

negative
position, value
position, value

13



symbol attributes

production Attribute rule e e
sign negative
list position, value
bit position, value

number = sign list list.position < O
if sign.negative
number.value < -list.value
else

number.value € list.value

sign 2 + sign.negative < false
sign =2 - sign.negative < true

14



symbol attributes

production Attribute rule Julbeiale

sign negative
list position, value
bit position, value

list 2 bit pit.position < list.position
ist.value €< bit.value

list, = list; bit list,.position € list,.position + 1
pit.position € list,.position
isty.value € list;.value + bit.value

bit 2> 0 bit.value €< 0
bit 2> 1 bit.value & 2Pbit.position

15



Parse tree and the dependence graph

Number Val=>5

SIZN neg=true /POS=0 list VaI=5<\
Pos=1 list «val=4 Pos=0 - DIt Val=1

] — it Val=0
pos=2 list val=a Pos=1 bit

L

Pos=2 bit val=4

A
1 0 1

&
<«

16



Attributes ...

e Attributes fall into two classes: Synthesized
and Inherited

e \Value of a synthesized attribute is
computed from the values of children

nodes
= Attribute value for LHS of a rule comes from
attributes of RHS
e VValue of an inherited attribute is computed
from the sibling and parent nodes

e Attribute value for a symbol on RHS of a rule

comes from attributes of LHS and RHS symbols
17



Attributes ...

e Each grammar production A - a has
associated with it a set of semantic
rules of the form

b=f(c,, c,, ..., C)
where f is a function, and x

— Either b is a synthesized attribute of A
— OR b is an inherited attribute of one of
the grammar symbols on the right

* Attribute b depends on attributes c,,
Cy, -oey Gy

18



Synthesized Attributes

e a syntax directed definition that uses only
synthesized attributes is said to be an S-
attributed definition

e A parse tree for an S-attributed definition
can be annotated by evaluating semantic
rules for attributes

19



Syntax Directed Definitions for a desk
calculator program

L>ES Print (E.val)
ES>E+T E.val = E.val + T.val
E—>T E.val = T.val
T—>T*F T.val = T.val * F.val
T—>F T.val = F.val

F — (E) F.val = E.val

F — digit F.val = digit.lexval

e terminals are assumed to have only
synthesized attribute values of which are
supplied by lexical analyzer

e start symbol does not have any inherited

attribute
20



Parse treefor3*4+5n

| Print17

Val=17 E

R,

Val=12 E T Val=5

N l/

VaI 127 Val=5

21



Inherited Attributes

e an inherited attribute is one whose
value is defined in terms of attributes
at the parent and/or siblings

e Used for finding out the context in
which it appears

e possible to use only S-attributes but
more natural to use inherited
attributes

22



Inherited Attributes

D—->TL L.in = T.type
T — real T.type = real
T Iint T.type = int
L—> L, id L,.in = L.in;

addtype(id.entry, L.in)

L — id addtype (id.entry,L.in)

23



Parse tree for

real x, vy, z
D

type=real L in=real \
l % addtype(z,real
real L in=real | Z f
may,real
in=real | ’ y —

D

addtype(x,real) «— X

24



Dependence Graph

e If an attribute b depends on an attribute c
then the semantic rule for b must be
evaluated after the semantic rule for c

e The dependencies among the nodes can be
depicted by a directed graph called
dependency graph

25



Algorithm to construct dependency graph

for each node n in the parse tree do
for each attribute a of the grammar symbol do
construct a node in the dependency graph
for a

for each node n in the parse tree do
for each semanticruleb =f(c,, ¢, , ..., ¢,)
{ associated with production at n } do
fori=1tokdo
construct an edge fromc. to b

26



Example

e Suppose A.a = f(X.x, Y.y) is a semantic rule for
A—>XY

X/A \Y X/A';a\Y

e |f production A — XY has the semantic rule
X.x=g(A.a, Yy)

N L

XX < Y.y

A.a

27



Example

e Whenever following production is used in a parse tree
E—>E, +E, E.val = E .val + E,.val
we create a dependency graph

E.val

TN

El.val E2.val

28



Example

e dependency graph for rea

id1, id2, id3

e put a dummy node for a semantic rule that

consists of a procedure ca

type=real

addtype(x,real) «— X

id.x

in=real

—

addtype(z,real

T

addtype(y,real

id.z Z

29



Evaluation Order

e Any topological sort of dependency graph gives a
valid order in which semantic rules must be

evaluated
addtype(id3.entry, a5) fyeeyeal
a9 := a7/ Type_IeF%rgF L in=real idzZ

a4 = real D
a/=a5
addtype(idl.entry, a9)

ab=2a4
L in=real\>
addtype(id2.entry, a7) A/‘/?Q }geu,real

addtype(y,real
in=real | ) idy Y

N

addtype(x,real) «— X id.x

30



