
Semantic Analysis

• Static checking
– Type checking

– Control flow checking

– Uniqueness checking

– Name checks

• Disambiguate
overloaded operators

• Type coercion

• Error reporting

1

Beyond syntax analysis
• Parser cannot catch all the program errors
• There is a level of correctness that is deeper

than syntax analysis
• Some language features cannot be

modeled using context free grammar
formalism
– Whether an identifier has been declared

before use
– This problem is of identifying a language
 {wαw | w є Σ*}
– This language is not context free

2

Beyond syntax …

• Examples
 string x; int y;
 y = x + 3

 the use of x could be a type error
 int a, b;
 a = b + c

 c is not declared

• An identifier may refer to different variables in
different parts of the program

• An identifier may be usable in one part of the
program but not another

3

Compiler needs to know?
• Whether a variable has been declared?
• Are there variables which have not been

declared?
• What is the type of the variable?
• Whether a variable is a scalar, an array, or a

function?
• What declaration of the variable does each

reference use?
• If an expression is type consistent?
• If an array use like A[i,j,k] is consistent with

the declaration? Does it have three
dimensions?

4

• How many arguments does a function
take?

• Are all invocations of a function
consistent with the declaration?

• If an operator/function is overloaded,
which function is being invoked?

• Inheritance relationship
• Classes not multiply defined
• Methods in a class are not multiply

defined

• The exact requirements depend upon

the language
5

How to answer these questions?

• These issues are part of semantic analysis
phase

• Answers to these questions depend upon
values like type information, number of
parameters etc.

• Compiler will have to do some computation
to arrive at answers

• The information required by computations
may be non local in some cases

6

How to … ?

• Use formal methods
– Context sensitive grammars
– Extended attribute grammars

• Use ad-hoc techniques
– Symbol table
– Ad-hoc code

• Something in between !!!
– Use attributes
– Do analysis along with parsing
– Use code for attribute value computation
– However, code is developed systematically

7

Why attributes ?

• For lexical analysis and syntax analysis
formal techniques were used.

• However, we still had code in form of
actions along with regular expressions
and context free grammar

• The attribute grammar formalism is
important
– However, it is very difficult to implement
– But makes many points clear
– Makes “ad-hoc” code more organized
– Helps in doing non local computations

8

Attribute Grammar Framework

• Generalization of CFG where each
grammar symbol has an associated set
of attributes

• Values of attributes are computed by
semantic rules

9

Attribute Grammar Framework

• Two notations for associating semantic
rules with productions

• Syntax directed definition
•high level specifications
•hides implementation details
•explicit order of evaluation is not

specified
•Translation scheme

•indicate order in which semantic rules are
to be evaluated

•allow some implementation details to be
shown

10

• Conceptually both:
– parse input token stream
– build parse tree
– traverse the parse tree to evaluate the

semantic rules at the parse tree nodes

• Evaluation may:
– save information in the symbol table
– issue error messages
– generate code
– perform any other activity

11

Attribute Grammar Framework

Example

• Consider a grammar for signed binary
numbers

 number  sign list
 sign  + | -
 list  list bit | bit
 bit  0 | 1

• Build attribute grammar that

annotates number with the value it
represents

12

Example

• Associate attributes with grammar
symbols

 symbol attributes
 number value
 sign negative
 list position, value
 bit position, value

13

production Attribute rule

number  sign list list.position  0

 if sign.negative
 number.value  -list.value

 else
 number.value  list.value

sign  + sign.negative  false

sign  - sign.negative  true

14

symbol attributes

number value
sign negative
list position, value
bit position, value

 production Attribute rule

 list  bit bit.position  list.position

 list.value  bit.value

 list0  list1 bit list1.position  list0.position + 1

 bit.position  list0.position

 list0.value  list1.value + bit.value

 bit  0 bit.value  0

 bit  1 bit.value  2bit.position

15

symbol attributes

number value
sign negative
list position, value
bit position, value

16

Number

sign list

list bit

list bit

bit

- 1 0 1

neg=true Pos=0

Pos=1

Pos=1 Pos=2

Pos=2

Pos=0

Val=4

Val=0
Val=4

Val=4 Val=1

Val=5

Val=-5

Parse tree and the dependence graph

Attributes …
• Attributes fall into two classes: Synthesized

and Inherited
• Value of a synthesized attribute is

computed from the values of children
nodes
 Attribute value for LHS of a rule comes from

attributes of RHS
• Value of an inherited attribute is computed

from the sibling and parent nodes
• Attribute value for a symbol on RHS of a rule

comes from attributes of LHS and RHS symbols
17

Attributes …

• Each grammar production A → α has
associated with it a set of semantic
rules of the form

 b = f (c1, c2, ..., ck)
 where f is a function, and x

– Either b is a synthesized attribute of A
– OR b is an inherited attribute of one of

the grammar symbols on the right
• Attribute b depends on attributes c1,

c2, ..., ck
 18

Synthesized Attributes

• a syntax directed definition that uses only
synthesized attributes is said to be an S-
attributed definition

• A parse tree for an S-attributed definition
can be annotated by evaluating semantic
rules for attributes

19

Syntax Directed Definitions for a desk
calculator program

L  E $ Print (E.val)
E  E + T E.val = E.val + T.val
E  T E.val = T.val
T  T * F T.val = T.val * F.val
T  F T.val = F.val
F  (E) F.val = E.val
F  digit F.val = digit.lexval

• terminals are assumed to have only
synthesized attribute values of which are
supplied by lexical analyzer

• start symbol does not have any inherited
attribute

20

21

Parse tree for 3 * 4 + 5 n

L

E $

+ T E

*

T

T F

F

F

id

id

id

Print 17

Val=3

Val=3 Val=4

Val=12 Val=5

Val=12 Val=5

Val=17

Inherited Attributes
• an inherited attribute is one whose

value is defined in terms of attributes
at the parent and/or siblings

• Used for finding out the context in
which it appears

• possible to use only S-attributes but
more natural to use inherited
attributes

22

Inherited Attributes
D  T L L.in = T.type

T  real T.type = real

T int T.type = int

L  L1, id L1.in = L.in;
 addtype(id.entry, L.in)

L  id addtype (id.entry,L.in)

23

Parse tree for
real x, y, z

24

D

T L

real L , z

, y L

x

type=real in=real

in=real

in=real

addtype(x,real)

addtype(y,real)

addtype(z,real)

Dependence Graph

• If an attribute b depends on an attribute c
then the semantic rule for b must be
evaluated after the semantic rule for c

• The dependencies among the nodes can be
depicted by a directed graph called
dependency graph

25

Algorithm to construct dependency graph

for each node n in the parse tree do
 for each attribute a of the grammar symbol do
 construct a node in the dependency graph
 for a

for each node n in the parse tree do
 for each semantic rule b = f (c1, c2 , ..., ck)
 { associated with production at n } do
 for i = 1 to k do
 construct an edge from ci to b

26

Example

• Suppose A.a = f(X.x , Y.y) is a semantic rule for
A  X Y

• If production A  X Y has the semantic rule

X.x = g(A.a, Y.y)

27

A

X Y

A.a

X.x Y.y

A

X Y

A.a

X.x Y.y

Example

• Whenever following production is used in a parse tree

 E E1 + E2 E.val = E1.val + E2.val
 we create a dependency graph

28

E.val

E1.val E2.val

Example
• dependency graph for real id1, id2, id3
• put a dummy node for a semantic rule that

consists of a procedure call

29

D

T L

real L , z

, y L

x

type=real in=real

in=real

in=real

addtype(x,real)

addtype(y,real)

addtype(z,real)

id.x

id.y

id.z
Type_lexeme

Evaluation Order

• Any topological sort of dependency graph gives a
valid order in which semantic rules must be
evaluated
a4 = real
a5 = a4
addtype(id3.entry, a5)
a7 = a5
addtype(id2.entry, a7)
a9 := a7
addtype(id1.entry, a9)

30

D

T L

real L , z

, y L

x

type=real in=real

in=real

in=real

addtype(x,real)

addtype(y,real)

addtype(z,real)

id.x

id.y

id.z
Type_lexeme

