
1

Bottom up parsing
• Construct a parse tree for an input string beginning at

leaves and going towards root OR
• Reduce a string w of input to start symbol of grammar
 Consider a grammar
 S  aABe
 A  Abc | b
 B  d
 And reduction of a string
 a b b c d e
 a A b c d e
 a A d e
 a A B e
 S

The sentential forms
happen to be a right most
derivation in the reverse
order.
S  a A B e

  a A d e

  a A b c d e

  a b b c d e

2

• Split string being parsed into two parts

– Two parts are separated by a special
character “.”

– Left part is a string of terminals and non
terminals

– Right part is a string of terminals

• Initially the input is .w

Shift reduce parsing

3

Shift reduce parsing …

• Bottom up parsing has two actions

• Shift: move terminal symbol from
right string to left string

 if string before shift is α.pqr

 then string after shift is αp.qr

4

Shift reduce parsing …

• Reduce: immediately on the left of
“.” identify a string same as RHS of
a production and replace it by LHS

if string before reduce action is αβ.pqr

and Aβ is a production

then string after reduction is αA.pqr

5

Example
Assume grammar is E  E+E | E*E | id
Parse id*id+id
Assume an oracle tells you when to shift / when to reduce
 String action (by oracle)
 .id*id+id shift
 id.*id+id reduce Eid
 E.*id+id shift
 E*.id+id shift
 E*id.+id reduce Eid
 E*E.+id reduce EE*E
 E.+id shift
 E+.id shift
 E+id. Reduce Eid
 E+E. Reduce EE+E
 E. ACCEPT

6

Shift reduce parsing …

• Symbols on the left of “.” are kept on a stack
– Top of the stack is at “.”

– Shift pushes a terminal on the stack

– Reduce pops symbols (rhs of production) and
pushes a non terminal (lhs of production) onto
the stack

• The most important issue: when to shift and
when to reduce

• Reduce action should be taken only if the
result can be reduced to the start symbol

7

Issues in bottom up parsing

• How do we know which action to
take
– whether to shift or reduce
– Which production to use for

reduction?

• Sometimes parser can reduce but
it should not:
XЄ can always be used for

reduction!

8

Issues in bottom up parsing

• Sometimes parser can reduce in
different ways!

• Given stack δ and input symbol a,
should the parser
– Shift a onto stack (making it δa)
– Reduce by some production Aβ

assuming that stack has form αβ (making
it αA)

– Stack can have many combinations of αβ
– How to keep track of length of β?

Handles

• The basic steps of a bottom-up parser
are

– to identify a substring within a rightmost
sentential form which matches the RHS of
a rule.

– when this substring is replaced by the LHS
of the matching rule, it must produce the
previous rightmost-sentential form.

• Such a substring is called a handle

10

Handle

• A handle of a right sentential form γ is

– a production rule A→ β, and

– an occurrence of a sub-string β in γ

such that

• when the occurrence of β is replaced by A
in γ, we get the previous right sentential
form in a rightmost derivation of γ.

11

Handle

Formally, if
S rm* αAw rm αβw,

then
• β in the position following α,
• and the corresponding production A β
is a handle of αβw.

• The string w consists of only terminal

symbols

12

Handle

• We only want to reduce handle
and not any RHS

• Handle pruning: If β is a handle
and A  β is a production then
replace β by A

• A right most derivation in reverse
can be obtained by handle
pruning.

13

Handle: Observation

• Only terminal symbols can appear
to the right of a handle in a
rightmost sentential form.

• Why?

14

Handle: Observation

Is this scenario possible:

• 𝛼𝛽𝛾 is the content of the stack

• 𝐴 → 𝛾 is a handle

• The stack content reduces to 𝛼𝛽𝐴

• Now B → 𝛽 is the handle

In other words, handle is not on top, but
buried inside stack

Not Possible! Why?

15

Handles …

• Consider two cases of right most
derivation to understand the fact
that handle appears on the top of
the stack

𝑆 → 𝛼𝐴𝑧 → 𝛼𝛽𝐵𝑦𝑧 → 𝛼𝛽𝛾𝑦𝑧
𝑆 → 𝛼𝐵𝑥𝐴𝑧 → 𝛼𝐵𝑥𝑦𝑧 → 𝛼𝛾𝑥𝑦𝑧

16

Handle always appears on the top

Case I: 𝑆 → 𝛼𝐴𝑧 → 𝛼𝛽𝐵𝑦𝑧 → 𝛼𝛽𝛾𝑦𝑧
stack input action

 αβγ yz reduce by Bγ

 αβB yz shift y

 αβBy z reduce by A βBy

 αA z

Case II: 𝑆 → 𝛼𝐵𝑥𝐴𝑧 → 𝛼𝐵𝑥𝑦𝑧 → 𝛼𝛾𝑥𝑦𝑧
 stack input action

 αγ xyz reduce by Bγ

 αB xyz shift x

 αBx yz shift y

 αBxy z reduce Ay

 αBxA z

17

Shift Reduce Parsers

• The general shift-reduce technique is:
– if there is no handle on the stack then

shift

– If there is a handle then reduce

• Bottom up parsing is essentially the
process of detecting handles and
reducing them.

• Different bottom-up parsers differ in
the way they detect handles.

18

Conflicts

• What happens when there is a
choice
– What action to take in case both

shift and reduce are valid?

 shift-reduce conflict

– Which rule to use for reduction if
reduction is possible by more than
one rule?

 reduce-reduce conflict

19

Conflicts

• Conflicts come either because of
ambiguous grammars or parsing
method is not powerful enough

20

Shift reduce conflict

stack input action

E+E *id reduce by EE+E

E *id shift

E* id shift

E*id reduce by Eid

E*E reduce byEE*E

E

stack input action

E+E *id shift

E+E* id shift

E+E*id reduce by Eid

E+E*E reduce by EE*E

E+E reduce by EE+E

E

Consider the grammar E  E+E | E*E | id

and the input id+id*id

21

Reduce reduce conflict

Consider the grammar M  R+R | R+c | R

 R  c

and the input c+c

Stack input action

 c+c shift

c +c reduce by Rc

R +c shift

R+ c shift

R+c reduce by Rc

R+R reduce by MR+R

M

Stack input action

 c+c shift

c +c reduce by Rc

R +c shift

R+ c shift

R+c reduce by MR+c

M

22

LR parsing
• Input buffer contains the input

string.

• Stack contains a string of the
form S0X1S1X2……XnSn

where each Xi is a grammar
symbol and each Si is a state.

• Table contains action and goto
parts.

• action table is indexed by state
and terminal symbols.

• goto table is indexed by state
and non terminal symbols.

input

stack

parser
driver

Parse table

action goto

output

23

Example
 E  E + T | T

T  T * F | F
F  (E) | id

State id + * () $ E T F

0 s5 s4 1 2 3

1 s6 acc

2 r2 s7 r2 r2

3 r4 r4 r4 r4

4 s5 s4 8 2 3

5 r6 r6 r6 r6

6 s5 s4 9 3

7 s5 s4 10

8 s6 s11

9 r1 s7 r1 r1

10 r3 r3 r3 r3

11 r5 r5 r5 r5

Consider a grammar
and its parse table

goto

action

24

Actions in an LR (shift reduce) parser

• Assume Si is top of stack and ai is current
input symbol

• Action [Si,ai] can have four values
1. sj: shift ai to the stack, goto state Sj

2. rk: reduce by rule number k
3. acc: Accept
4. err: Error (empty cells in the table)

25

Driving the LR parser

Stack: S0X1S1X2…XmSm Input: aiai+1…an$

• If action[Sm,ai] = shift S
 Then the configuration becomes
 Stack: S0X1S1……XmSmaiS Input: ai+1…an$

• If action[Sm,ai] = reduce Aβ
 Then the configuration becomes
 Stack: S0X1S1…Xm-rSm-r AS Input: aiai+1…an$
 Where r = |β| and S = goto[Sm-r,A]

26

Driving the LR parser

Stack: S0X1S1X2…XmSm Input: aiai+1…an$

• If action[Sm,ai] = accept
 Then parsing is completed. HALT

• If action[Sm,ai] = error (or empty cell)
 Then invoke error recovery routine.

27

Parse id + id * id
Stack Input Action

0 id+id*id$ shift 5

0 id 5 +id*id$ reduce by Fid

0 F 3 +id*id$ reduce by TF

0 T 2 +id*id$ reduce by ET

0 E 1 +id*id$ shift 6

0 E 1 + 6 id*id$ shift 5

0 E 1 + 6 id 5 *id$ reduce by Fid

0 E 1 + 6 F 3 *id$ reduce by TF

0 E 1 + 6 T 9 *id$ shift 7

0 E 1 + 6 T 9 * 7 id$ shift 5

0 E 1 + 6 T 9 * 7 id 5 $ reduce by Fid

0 E 1 + 6 T 9 * 7 F 10 $ reduce by TT*F

0 E 1 + 6 T 9 $ reduce by EE+T

0 E 1 $ ACCEPT

28

Configuration of a LR parser

• The tuple
<Stack Contents, Remaining Input>

defines a configuration of a LR parser
• Initially the configuration is

<S0 , a0a1…an$ >
• Typical final configuration on a

successful parse is
< S0X1Si , $>

29

LR parsing Algorithm
Initial state: Stack: S0 Input: w$

while (1) {
 if (action[S,a] = shift S’) {
 push(a); push(S’); ip++
 } else if (action[S,a] = reduce Aβ) {
 pop (2*|β|) symbols;
 push(A); push (goto*S’’,A+)

 (S’’ is the state at stack top after popping symbols)
 } else if (action[S,a] = accept) {
 exit
 } else { error }

30

Constructing parse table

Augment the grammar

• G is a grammar with start symbol S

• The augmented grammar G’ for G has
a new start symbol S’ and an
additional production S’  S

• When the parser reduces by this rule it
will stop with accept

Production to Use for Reduction
• How do we know which production to apply

in a given configuration

• We can guess!

– May require backtracking

• Keep track of “ALL” possible rules that can
apply at a given point in the input string

– But in general, there is no upper bound on the
length of the input string

– Is there a bound on number of applicable rules?

Some hands on!

• 𝐸′ → 𝐸

• 𝐸 → 𝐸 + 𝑇

• 𝐸 → 𝑇

• 𝑇 → 𝑇 ∗ 𝐹

• 𝑇 → 𝐹

• 𝐹 → (𝐸)

• 𝐹 → 𝑖𝑑

Strings to Parse

• id + id + id + id

• id * id * id * id

• id * id + id * id

• id * (id + id) * id

33

Parser states

• Goal is to know the valid reductions at
any given point

• Summarize all possible stack prefixes α as
a parser state

• Parser state is defined by a DFA state that
reads in the stack α

• Accept states of DFA are unique
reductions

34

Viable prefixes
• α is a viable prefix of the grammar if

– ∃w such that αw is a right sentential form

– <α,w> is a configuration of the parser

• As long as the parser has viable prefixes on
the stack no parser error has been seen

• The set of viable prefixes is a regular
language

• We can construct an automaton that
accepts viable prefixes

35

LR(0) items

• An LR(0) item of a grammar G is a
production of G with a special symbol “.” at
some position of the right side

• Thus production A→XYZ gives four LR(0)
items

 A  .XYZ
 A  X.YZ
 A  XY.Z
 A  XYZ.

36

LR(0) items

• An item indicates how much of a
production has been seen at a point in the
process of parsing
– Symbols on the left of “.” are already on

the stacks
– Symbols on the right of “.” are expected

in the input

37

Start state

• Start state of DFA is an empty
stack corresponding to S’.S item

• This means no input has been seen
• The parser expects to see a string

derived from S

38

Closure of a state

• Closure of a state adds items for
all productions whose LHS occurs
in an item in the state, just after
“.”
– Set of possible productions to be

reduced next
– Added items have “.” located at the

beginning
– No symbol of these items is on the

stack as yet

39

Closure operation

• Let I be a set of items for a grammar G

• closure(I) is a set constructed as follows:
– Every item in I is in closure (I)

– If A  α.Bβ is in closure(I) and B  γ is a
production then B  .γ is in closure(I)

• Intuitively A α.Bβ indicates that we
expect a string derivable from Bβ in input

• If B  γ is a production then we might
see a string derivable from γ at this point

40

Example

 For the grammar

 E’  E
 E  E + T | T
 T  T * F | F
 F → (E) | id

 If I is , E’  .E } then
closure(I) is

 E’  .E
 E  .E + T
 E  .T
 T  .T * F
 T  .F
 F  .id
 F  .(E)

41

Goto operation

• Goto(I,X) , where I is a set of items
and X is a grammar symbol,
– is closure of set of item A αX.β
– such that A → α.Xβ is in I

• Intuitively if I is a set of items for

some valid prefix α then goto(I,X)
is set of valid items for prefix αX

42

Goto operation

If I is , E’E. , EE. + T } then
goto(I,+) is

 E  E + .T
 T  .T * F
 T  .F
 F  .(E)
 F  .id

43

Sets of items

C : Collection of sets of LR(0) items for
grammar G’

C = , closure (, S’  .S }) }

repeat

 for each set of items I in C

 for each grammar symbol X

 if goto (I,X) is not empty and not in C

 ADD goto(I,X) to C

until no more additions to C

44

Example
Grammar:
 E’  E
 E  E+T | T
 T  T*F | F
 F  (E) | id

I0: closure(E’.E)
 E′  .E
 E  .E + T
 E  .T
 T  .T * F
 T  .F
 F  .(E)
 F  .id

I1: goto(I0,E)
 E′  E.
 E  E. + T

I2: goto(I0,T)
 E  T.
 T  T. *F

I3: goto(I0,F)
 T  F.

I4: goto(I0,()
 F  (.E)
 E  .E + T
 E  .T
 T  .T * F
 T  .F
 F  .(E)
 F  .id

I5: goto(I0,id)
 F  id.

45

I6: goto(I1,+)
 E  E + .T
 T  .T * F
 T  .F
 F  .(E)
 F  .id

I7: goto(I2,*)
 T  T * .F
 F .(E)
 F  .id

I8: goto(I4,E)
 F  (E.)
 E  E. + T

 goto(I4,T) is I2
 goto(I4,F) is I3

 goto(I4,() is I4

 goto(I4,id) is I5

I9: goto(I6,T)
 E  E + T.
 T  T. * F

 goto(I6,F) is I3
 goto(I6,() is I4
 goto(I6,id) is I5

I10: goto(I7,F)
 T  T * F.

 goto(I7,() is I4

 goto(I7,id) is I5

I11: goto(I8,))
 F  (E).

 goto(I8,+) is I6

 goto(I9,*) is I7

46

I0 I4 I8 I11

I2 I7 I10

I3

I1 I6

I5

I9 +

+
*

*

(

(

(

(

id

id

id

id

)

47

I0 I4 I8 I11

I2 I7 I10

I3

I1 I6

I5

I9 E

E

T

T T

F

F

F

F

48

I0 I4 I8 I11

I2 I7 I10

I3

I1 I6

I5

I9 E

E

+

+

T

T T

*

*

F

F

F

F

(

(

(

(

id

id

id

id

)

LR(0) (?) Parse Table

• The information is still not sufficient to
help us resolve shift-reduce conflict.
For example the state:

I1: E′  E.
 E  E. + T

• We need some more information to
make decisions.

50

Constructing parse table

• First(α) for a string of terminals and non
terminals α is
– Set of symbols that might begin the fully

expanded (made of only tokens) version of α

• Follow(X) for a non terminal X is
– set of symbols that might follow the derivation

of X in the input stream

first follow

X

51

Compute first sets

• If X is a terminal symbol then first(X) = {X}
• If X  Є is a production then Є is in first(X)
• If X is a non terminal and X  YlY2 … Yk is a

production, then
 if for some i, a is in first(Yi)
 and Є is in all of first(Yj) (such that j<i)
 then a is in first(X)
• If Є is in first (Y1) … first(Yk) then Є is in

first(X)
• Now generalize to a string 𝛼 of terminals

and non-terminals

52

Example

• For the expression grammar

 E  T E‘ E'  +T E' | Є

 T  F T' T'  * F T' | Є

 F  (E) | id

 First(E) = First(T) = First(F)

 = { (, id }

 First(E')

 = {+, Є}

 First(T')

 = { *, Є}

53

Compute follow sets

1. Place $ in follow(S) // S is the start symbol
2. If there is a production A → αBβ
 then everything in first(β) (except ε) is in

follow(B)
3. If there is a production A → αBβ and first(β)

contains ε
 then everything in follow(A) is in follow(B)
4. If there is a production A → αB
 then everything in follow(A) is in follow(B)
Last two steps have to be repeated until the
follow sets converge.

54

Example

• For the expression grammar

 E  T E’

 E'  + T E' | Є

 T  F T'

 T'  * F T' | Є

 F  (E) | id

 follow(E) = follow(E’) = , $,) -
 follow(T) = follow(T’) = , $,), + -
 follow(F) = { $,), +, *}

55

Construct SLR parse table
• Construct C={I0, …, In} the collection of

sets of LR(0) items
• If Aα.aβ is in Ii and goto(Ii,a) = Ij

 then action[i,a] = shift j
• If Aα. is in Ii

 then action[i,a] = reduce Aα for all a in
follow(A)

• If S'S. is in Ii then action[i,$] = accept
• If goto(Ii,A) = Ij

 then goto[i,A]=j for all non terminals A
• All entries not defined are errors

56

Notes
• This method of parsing is called SLR (Simple LR)
• LR parsers accept LR(k) languages

– L stands for left to right scan of input
– R stands for rightmost derivation
– k stands for number of lookahead token

• SLR is the simplest of the LR parsing methods.
SLR is too weak to handle most languages!

• If an SLR parse table for a grammar does not
have multiple entries in any cell then the
grammar is unambiguous

• All SLR grammars are unambiguous
• Are all unambiguous grammars in SLR?

57

Practice Assignment

Construct SLR parse table for following grammar

 E  E + E | E - E | E * E | E / E | (E) | digit

Show steps in parsing of string
 9*5+(2+3*7)

• Steps to be followed

– Augment the grammar
– Construct set of LR(0) items
– Construct the parse table
– Show states of parser as the given string is parsed

58

Example

• Consider following grammar and its SLR parse table:
 S’  S
 S  L = R
 S  R
 L  *R
 L  id
 R  L

I0: S’  .S

S  .L=R
S  .R
L  .*R
L  .id
R  .L

I1: goto(I0, S)
 S’  S.

I2: goto(I0, L)
 S  L.=R
 R  L.

 Assignment (not
to be submitted):
Construct rest of
the items and the
parse table.

59

= * id $ S L R

0 s4 s5 1 2 3

1 acc

2 s6,r6 r6

3 r3

4 s4 s5 8 7

5 r5 r5

6 s4 s5 8 9

7 r4 r4

8 r6 r6

9 r2

SLR parse table for the grammar

The table has multiple entries in action[2,=]

60

• There is both a shift and a reduce entry in
action[2,=]. Therefore state 2 has a shift-
reduce conflict on symbol “=“, However,
the grammar is not ambiguous.

• Parse id=id assuming reduce action is taken
in [2,=]
Stack input action
0 id=id shift 5
0 id 5 =id reduce by Lid
0 L 2 =id reduce by RL
0 R 3 =id error

61

• if shift action is taken in [2,=]
 Stack input action
 0 id=id$ shift 5
 0 id 5 =id$ reduce by Lid
 0 L 2 =id$ shift 6
 0 L 2 = 6 id$ shift 5
 0 L 2 = 6 id 5 $ reduce by Lid
 0 L 2 = 6 L 8 $ reduce by RL
 0 L 2 = 6 R 9 $ reduce by SL=R
 0 S 1 $ ACCEPT

62

Problems in SLR parsing
• No sentential form of this grammar can start with R=…
• However, the reduce action in action[2,=] generates a

sentential form starting with R=
• Therefore, the reduce action is incorrect
• In SLR parsing method state i calls for reduction on

symbol “a”, by rule Aα if Ii contains [Aα.+ and “a” is
in follow(A)

• However, when state I appears on the top of the stack,
the viable prefix βα on the stack may be such that βA
can not be followed by symbol “a” in any right
sentential form

• Thus, the reduction by the rule Aα on symbol “a” is
invalid

• SLR parsers cannot remember the left context

63

Canonical LR Parsing
• Carry extra information in the state so that

wrong reductions by A  α will be ruled out

• Redefine LR items to include a terminal
symbol as a second component (look ahead
symbol)

• The general form of the item becomes [A 
α.β, a] which is called LR(1) item.

• Item [A  α., a] calls for reduction only if
next input is a. The set of symbols “a”s will
be a subset of Follow(A).

64

Closure(I)

repeat
 for each item [A  α.Bβ, a] in I
 for each production B  γ in G'
 and for each terminal b in First(βa)
 add item [B  .γ, b] to I
until no more additions to I

65

Example
Consider the following grammar

 S‘ S
 S  CC
 C  cC | d

Compute closure(I) where I=,*S’  .S, $]}

 S‘ .S, $
 S  .CC, $
 C  .cC, c
 C  .cC, d
 C  .d, c
 C  .d, d

66

Example
Construct sets of LR(1) items for the grammar on previous slide

I0: S′  .S, $
 S  .CC, $
 C  .cC, c/d
 C  .d, c/d

I1: goto(I0,S)
 S′  S., $

I2: goto(I0,C)
 S  C.C, $
 C  .cC, $
 C  .d, $

I3: goto(I0,c)
 C  c.C, c/d
 C  .cC, c/d
 C  .d, c/d

I4: goto(I0,d)
 C  d., c/d

I5: goto(I2,C)
 S  CC., $

I6: goto(I2,c)
 C  c.C, $
 C  .cC, $
 C  .d, $

I7: goto(I2,d)
 C  d., $

I8: goto(I3,C)
 C  cC., c/d

I9: goto(I6,C)
 C  cC., $

67

Construction of Canonical LR
parse table

• Construct C={I0, …,In} the sets of LR(1) items.

• If [A  α.aβ, b] is in Ii and goto(Ii, a)=Ij

 then action[i,a]=shift j

• If [A  α., a] is in Ii

 then action[i,a] reduce A  α

• If [S′  S., $] is in Ii

 then action[i,$] = accept

• If goto(Ii, A) = Ij then goto[i,A] = j for all non terminals A

68

Parse table

State c d $ S C

0 s3 s4 1 2

1 acc

2 s6 s7 5

3 s3 s4 8

4 r3 r3

5 r1

6 s6 s7 9

7 r3

8 r2 r2

9 r2

69

Notes on Canonical LR Parser

• Consider the grammar discussed in the previous two slides. The
language specified by the grammar is c*dc*d.

• When reading input cc…dcc…d the parser shifts cs into stack and

then goes into state 4 after reading d. It then calls for reduction by
Cd if following symbol is c or d.

• IF $ follows the first d then input string is c*d which is not in the

language; parser declares an error

• On an error canonical LR parser never makes a wrong shift/reduce
move. It immediately declares an error

• Problem: Canonical LR parse table has a large number of states

70

LALR Parse table
• Look Ahead LR parsers

• Consider a pair of similar looking states (same kernel and

different lookaheads) in the set of LR(1) items
 I4: C  d. , c/d I7: C  d., $

• Replace I4 and I7 by a new state I47 consisting of
 (C  d., c/d/$)

• Similarly I3 & I6 and I8 & I9 form pairs

• Merge LR(1) items having the same core

71

Construct LALR parse table
• Construct C={I0,……,In} set of LR(1) items

• For each core present in LR(1) items find all sets having the same

core and replace these sets by their union

• Let C' = {J0,…….,Jm} be the resulting set of items

• Construct action table as was done earlier

• Let J = I1 U I2…….U Ik

 since I1 , I2……., Ik have same core, goto(J,X) will have he same
core

 Let K=goto(I1,X) U goto(I2,X)……goto(Ik,X) the goto(J,X)=K

72

LALR parse table …

State c d $ S C

0 s36 s47 1 2

1 acc

2 s36 s47 5

36 s36 s47 89

47 r3 r3 r3

5 r1

89 r2 r2 r2

73

Notes on LALR parse table

• Modified parser behaves as original except that it will
reduce Cd on inputs like ccd. The error will eventually
be caught before any more symbols are shifted.

• In general core is a set of LR(0) items and LR(1) grammar

may produce more than one set of items with the same
core.

• Merging items never produces shift/reduce conflicts but

may produce reduce/reduce conflicts.

• SLR and LALR parse tables have same number of states.

74

Notes on LALR parse table…
• Merging items may result into conflicts in LALR parsers

which did not exist in LR parsers

• New conflicts can not be of shift reduce kind:
– Assume there is a shift reduce conflict in some state of LALR

parser with items
 {[Xα.,a],[Yγ.aβ,b]}
– Then there must have been a state in the LR parser with the same

core
– Contradiction; because LR parser did not have conflicts

• LALR parser can have new reduce-reduce conflicts
– Assume states
 {[Xα., a], [Yβ., b]} and {[Xα., b], [Yβ., a]}
– Merging the two states produces
 {[Xα., a/b], [Yβ., a/b]}

75

Notes on LALR parse table…

• LALR parsers are not built by first making canonical LR parse tables

• There are direct, complicated but efficient algorithms to develop LALR
parsers

• Relative power of various classes

– SLR(1) ≤ LALR(1) ≤ LR(1)

– SLR(k) ≤ LALR(k) ≤ LR(k)

– LL(k) ≤ LR(k)

76

Error Recovery
• An error is detected when an entry in the action table is found to be

empty.

• Panic mode error recovery can be implemented as follows:

– scan down the stack until a state S with a goto on a particular
nonterminal A is found.

– discard zero or more input symbols until a symbol a is found that can
legitimately follow A.

– stack the state goto[S,A] and resume parsing.

• Choice of A: Normally these are non terminals representing major

program pieces such as an expression, statement or a block. For
example if A is the nonterminal stmt, a might be semicolon or end.

77

Parser Generator
• Some common parser generators

– YACC: Yet Another Compiler Compiler
– Bison: GNU Software
– ANTLR: ANother Tool for Language Recognition

• Yacc/Bison source program specification (accept LALR

grammars)
 declaration
 %%
 translation rules
 %%
 supporting C routines

78

Yacc and Lex schema

Lex

Yacc y.tab.c

C
Compiler

Parser

Token
specifications

Grammar
specifications

Lex.yy.c

C code for
parser

Object code

Input
program

Abstract
Syntax tree

C code for lexical analyzer

Refer to YACC Manual

79

Bottom up parsing …
• A more powerful parsing technique

• LR grammars – more expensive than LL

• Can handle left recursive grammars

• Can handle virtually all the programming languages

• Natural expression of programming language syntax

• Automatic generation of parsers (Yacc, Bison etc.)

• Detects errors as soon as possible

• Allows better error recovery

