Bottom up parsing

- Construct a parse tree for an input string beginning at leaves and going towards root OR
- Reduce a string w of input to start symbol of grammar Consider a grammar

$$
\begin{aligned}
& S \rightarrow a A B e \\
& A \rightarrow A b c \quad b \\
& B \rightarrow d
\end{aligned}
$$

And reduction of a string

$$
\begin{aligned}
& a \underline{b} b c d e \\
& a \underline{A b c} d e \\
& \text { a Aqe } \\
& \frac{a A B e}{S}
\end{aligned}
$$

The sentential forms happen to be a right most derivation in the reverse order.

$$
\begin{aligned}
S & \Rightarrow a A \underline{B} e \\
& \Rightarrow a \underline{A} d e \\
& \Rightarrow a \underline{A} b c d e \\
& \Rightarrow a b b c d e
\end{aligned}
$$

Shift reduce parsing

- Split string being parsed into two parts
- Two parts are separated by a special character "."
- Left part is a string of terminals and non terminals
- Right part is a string of terminals
- Initially the input is .w

Shift reduce parsing ...

- Bottom up parsing has two actions
- Shift: move terminal symbol from right string to left string
if string before shift is
a.pqr
then string after shift is ap.qr

Shift reduce parsing ...

- Reduce: immediately on the left of "." identify a string same as RHS of a production and replace it by LHS
if string before reduce action is $\alpha \beta$.pqr and $A \rightarrow \beta$ is a production
then string after reduction is α A.pqr

Example

Assume grammar is $E \rightarrow E+E|E * E|$ id
Parse id*id+id
Assume an oracle tells you when to shift / when to reduce

String
.id*id+id
id. ${ }^{*}$ id+id
E.*id+id

E*.id+id
E*id.+id
E*E.+id
E.+id

E+.id
E+id.
E+E.
E.
action (by oracle)
shift
reduce $\mathrm{E} \rightarrow$ id
shift
shift
reduce $\mathrm{E} \rightarrow$ id
reduce $\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}$
shift
shift
Reduce $\mathrm{E} \rightarrow$ id
Reduce E \rightarrow E+E
ACCEPT

Shift reduce parsing ...

- Symbols on the left of "." are kept on a stack
- Top of the stack is at "."
- Shift pushes a terminal on the stack
- Reduce pops symbols (rhs of production) and pushes a non terminal (Ihs of production) onto the stack
- The most important issue: when to shift and when to reduce
- Reduce action should be taken only if the result can be reduced to the start symbol

Issues in bottom up parsing

- How do we know which action to take
- whether to shift or reduce
-Which production to use for reduction?
- Sometimes parser can reduce but it should not:
$x \rightarrow €$ can always be used for reduction!

Issues in bottom up parsing

- Sometimes parser can reduce in different ways!
- Given stack δ and input symbol a, should the parser
-Shift a onto stack (making it סa)
-Reduce by some production $A \rightarrow \beta$ assuming that stack has form $\alpha \beta$ (making it α A)
-Stack can have many combinations of $\alpha \beta$
- How to keep track of length of β ?

Handles

- The basic steps of a bottom-up parser are
- to identify a substring within a rightmost sentential form which matches the RHS of a rule.
- when this substring is replaced by the LHS of the matching rule, it must produce the previous rightmost-sentential form.
- Such a substring is called a handle

Handle

- A handle of a right sentential form γ is
- a production rule $A \rightarrow \beta$, and
- an occurrence of a sub-string β in γ
such that
- when the occurrence of β is replaced by A in γ, we get the previous right sentential form in a rightmost derivation of γ.

Handle

Formally, if

$$
S \rightarrow m^{*} \alpha A w \rightarrow r m \alpha \beta,
$$

then

- β in the position following α,
- and the corresponding production $A \rightarrow \beta$ is a handle of $\alpha \beta w$.
- The string w consists of only terminal symbols

Handle

- We only want to reduce handle and not any RHS
- Handle pruning: If β is a handle and $A \rightarrow \beta$ is a production then replace β by A
- A right most derivation in reverse can be obtained by handle pruning.

Handle: Observation

- Only terminal symbols can appear to the right of a handle in a rightmost sentential form.
- Why?

Handle: Observation

Is this scenario possible:

- $\alpha \beta \gamma$ is the content of the stack
- $A \rightarrow \gamma$ is a handle
- The stack content reduces to $\alpha \beta A$
- Now $\mathrm{B} \rightarrow \beta$ is the handle

In other words, handle is not on top, but buried inside stack

Handles ...

- Consider two cases of right most derivation to understand the fact that handle appears on the top of the stack

$$
\begin{aligned}
& S \rightarrow \alpha A z \rightarrow \alpha \beta B y z \rightarrow \alpha \beta \gamma y z \\
& S \rightarrow \alpha B x A z \rightarrow \alpha B x y z \rightarrow \alpha \gamma x y z
\end{aligned}
$$

Handle always appears on the top

Case I: $S \rightarrow \alpha A z \rightarrow \alpha \beta B y z \rightarrow \alpha \beta \gamma y z$ stack input action		
$\alpha \beta \gamma$	yz	reduce by $\mathrm{B} \rightarrow \gamma$
$\alpha \beta B$	yz	shift y
$\alpha \beta \mathrm{By}$	z	reduce by $\mathrm{A} \rightarrow \beta \mathrm{By}$
$\alpha \mathrm{A}$	z	

Case II: $S \rightarrow \alpha B x A z \rightarrow \alpha B x y z \rightarrow \alpha \gamma x y z$
stack
α
$\alpha \mathrm{B}$
$\alpha B x$
aBxy
$\alpha B \times A$
Z
Z
action
reduce by $\mathrm{B} \rightarrow \gamma$
shift x
shift y
reduce $A \rightarrow y$

Shift Reduce Parsers

- The general shift-reduce technique is:
- if there is no handle on the stack then shift
- If there is a handle then reduce
- Bottom up parsing is essentially the process of detecting handles and reducing them.
- Different bottom-up parsers differ in the way they detect handles.

Conflicts

- What happens when there is a choice
-What action to take in case both shift and reduce are valid? shift-reduce conflict
- Which rule to use for reduction if reduction is possible by more than one rule? reduce-reduce conflict

Conflicts

- Conflicts come either because of ambiguous grammars or parsing method is not powerful enough

Shift reduce conflict

Consider the grammar $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}\left|\mathrm{E}^{*} \mathrm{E}\right|$ id and the input id+id*id

stack	input	action
$\mathrm{E}+\mathrm{E}$	$*_{\text {id }}$	reduce by $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
E	$*_{\text {id }}$	shift
E^{*}	id	shift
$\mathrm{E}^{*} \mathrm{id}$		reduce by $\mathrm{E} \rightarrow$ id
$\mathrm{E}^{*} \mathrm{E}$		reduce byE $\rightarrow \mathrm{E}^{*} \mathrm{E}$
E		

stack	input	action
$\mathrm{E}+\mathrm{E}$	*id	shift
$\mathrm{E}+\mathrm{E}^{*}$	id	shift
$\mathrm{E}+\mathrm{E}^{*} \mathrm{id}$		reduce by $\mathrm{E} \rightarrow$ id
$\mathrm{E}+\mathrm{E}^{*} \mathrm{E}$		reduce by $\mathrm{E} \rightarrow \mathrm{E} * \mathrm{E}$
$\mathrm{E}+\mathrm{E}$		reduce by $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
E		

Reduce reduce conflict

Consider the grammar $M \rightarrow R+R|R+c| R$ $\mathrm{R} \rightarrow \mathrm{C}$
and the input

Stack	input	action
	$C+C$	shift
C	$+C$	reduce by $R \rightarrow C$
R	$+C$	shift
$R+$	C	shift
$R+C$		reduce by $R \rightarrow C$
$R+R$		reduce by $M \rightarrow R+R$
M		

C+C

Stack	input	action
	$C+C$	shift
C	$+C$	reduce by $R \rightarrow C$
R	$+C$	shift
$R+$	C	shift
$R+C$		reduce by $M \rightarrow R+C$
M		

LR parsing

- Input buffer contains the input string.
- Stack contains a string of the form $\mathrm{S}_{0} \mathrm{X}_{1} \mathrm{~S}_{1} \mathrm{X}_{2} \ldots \ldots . \mathrm{X}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}}$ where each X_{i} is a grammar symbol and each S_{i} is a state.
- Table contains action and goto parts.
- action table is indexed by state and terminal symbols.
- goto table is indexed by state and non terminal symbols.

Example

 Consider a grammarand its parse table

$$
\begin{array}{l|l}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} & \mathrm{~T} \\
\mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{~F} & \mathrm{~F} \\
\mathrm{~F} \rightarrow(\mathrm{E}) & \mathrm{id}
\end{array}
$$

Actions in an LR (shift reduce) parser

- Assume S_{i} is top of stack and a_{i} is current input symbol
- Action $\left[\mathrm{S}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right]$ can have four values 1. sj: shift a_{i} to the stack, goto state S_{j} 2. rk: reduce by rule number k 3. acc: Accept

4. err: Error (empty cells in the table)

Driving the LR parser

Stack: $\mathrm{S}_{0} \mathrm{X}_{1} \mathrm{~S}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{m}} \mathrm{S}_{\mathrm{m}}$
 Input: $a_{i} a_{i+1} \ldots a_{n} \$$

- If action $\left[S_{m}, a_{i}\right]=$ shift S

Then the configuration becomes
Stack: $\mathrm{S}_{0} \mathrm{X}_{1} \mathrm{~S}_{1} \ldots \ldots \mathrm{X}_{\mathrm{m}} \mathrm{S}_{\mathrm{m}} \mathrm{a}_{\mathrm{i}} \mathrm{S}$ Input: $\mathrm{a}_{\mathrm{i}+1} \ldots \mathrm{a}_{\mathrm{n}} \$$

- If action $\left[S_{m}, a_{j}\right]=$ reduce $A \rightarrow \beta$

Then the configuration becomes
Stack: $S_{0} X_{1} S_{1} \ldots X_{m-r} S_{m-r} A S \quad \operatorname{Input}: a_{i} a_{i+1} \ldots a_{n} \$$ Where $r=|\beta|$ and $S=$ goto $\left[S_{m-r}, A\right]$

Driving the LR parser

Stack: $\mathrm{S}_{0} \mathrm{X}_{1} \mathrm{~S}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{m}} \mathrm{S}_{\mathrm{m}} \quad$ Input: $\mathrm{a}_{\mathrm{i}} \mathrm{a}_{\mathrm{i}+1} \ldots \mathrm{a}_{\mathrm{n}} \$$

- If action $\left[\mathrm{S}_{\mathrm{m}}, \mathrm{a}_{\mathrm{i}}\right]=$ accept Then parsing is completed. HALT
- If action $\left[S_{m}, a_{i}\right]=$ error (or empty cell) Then invoke error recovery routine.

Parse id +id * id

Stack	Input	Action
0	id+id*id\$	shift 5
0 id 5	+id*id\$	reduce by $\mathrm{F} \rightarrow$ id
0 F 3	+id*id\$	reduce by $\mathrm{T} \rightarrow \mathrm{F}$
OT2	+id*id\$	reduce by $\mathrm{E} \rightarrow \mathrm{T}$
OE1	+id*id\$	shift 6
OE1+6 id*id\$	shift 5	
$0 \mathrm{E} 1+6 \mathrm{id} 5$	*id\$	reduce by $\mathrm{F} \rightarrow$ id
0E1+6F3	$*_{i d}$ \$	reduce by $\mathrm{T} \rightarrow \mathrm{F}$
OE1+6T9	*id\$	shift 7
OE1+6T9*7 id\$	shift 5	
OE1+6T9*7id 5	\$	reduce by $\mathrm{F} \rightarrow$ id
OE1+6T9*7F10	\$	reduce by $\mathrm{T} \rightarrow \mathrm{T}^{*} \mathrm{~F}$
OE1+6T9	\$	reduce by $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
OE1	\$	ACCEPT

Configuration of a LR parser

- The tuple
<Stack Contents, Remaining Input> defines a configuration of a LR parser
- Initially the configuration is

$$
<S_{0}, \quad a_{0} a_{1} \ldots a_{n} \$>
$$

- Typical final configuration on a successful parse is

$$
<\mathrm{S}_{0} \mathrm{X}_{1} \mathrm{~S}_{\mathrm{i}}, \quad \$>
$$

LR parsing Algorithm

Initial state: Stack: S_{0} Input: w\$
while (1) \{
if (action[S, a] = shift $\left.S^{\prime}\right)$ \{ push(a); push(S'); ip++
\} else if (action[S,a] = reduce $A \rightarrow \beta$) \{
pop (2*| $\beta \mid$) symbols;
push(A); push (goto[S",A])
($S^{\prime \prime}$ is the state at stack top after popping symbols)
\} else if (action[S, a] = accept) \{
exit
\} else \{ error \}

Constructing parse table

Augment the grammar

- G is a grammar with start symbol S
- The augmented grammar G^{\prime} for G has a new start symbol S^{\prime} and an additional production $\mathrm{S}^{\prime} \rightarrow \mathrm{S}$
- When the parser reduces by this rule it will stop with accept

Production to Use for Reduction

- How do we know which production to apply in a given configuration
- We can guess!
- May require backtracking
- Keep track of "ALL" possible rules that can apply at a given point in the input string
- But in general, there is no upper bound on the length of the input string
- Is there a bound on number of applicable rules?

Some hands on!

- $E^{\prime} \rightarrow E$
- $E \rightarrow E+T$
- $E \rightarrow T$
- $T \rightarrow T * F$
- $T \rightarrow F$
- $F \rightarrow(E)$
- $F \rightarrow i d$

Strings to Parse

- id +id +id +id
- id * id * id * id
- id *id + id * id
- id * (id + id) * id

Parser states

- Goal is to know the valid reductions at any given point
- Summarize all possible stack prefixes α as a parser state
- Parser state is defined by a DFA state that reads in the stack α
- Accept states of DFA are unique reductions

Viable prefixes

- α is a viable prefix of the grammar if $-\exists w$ such that αw is a right sentential form $-\langle\alpha, w\rangle$ is a configuration of the parser
- As long as the parser has viable prefixes on the stack no parser error has been seen
- The set of viable prefixes is a regular language
- We can construct an automaton that accepts viable prefixes

LR(0) items

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Thus production $A \rightarrow X Y Z$ gives four LR(0) items
$A \rightarrow$. XYZ
$A \rightarrow X . Y Z$
$A \rightarrow X Y . Z$
$A \rightarrow X Y Z$.

LR(0) items

- An item indicates how much of a production has been seen at a point in the process of parsing
- Symbols on the left of "." are already on the stacks
- Symbols on the right of "." are expected in the input

Start state

- Start state of DFA is an empty stack corresponding to $\mathrm{S}^{\prime} \rightarrow$. S item
- This means no input has been seen
- The parser expects to see a string derived from S

Closure of a state

- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after 1111
-Set of possible productions to be reduced next
-Added items have "." located at the beginning
- No symbol of these items is on the stack as yet

Closure operation

- Let I be a set of items for a grammar G
- closure(I) is a set constructed as follows:
- Every item in I is in closure (I)
- If $A \rightarrow \alpha . B \beta$ is in closure(I) and $B \rightarrow \gamma$ is a production then $B \rightarrow . \gamma$ is in closure(I)
- Intuitively $A \rightarrow \alpha . B \beta$ indicates that we expect a string derivable from $B \beta$ in input
- If $B \rightarrow \gamma$ is a production then we might see a string derivable from γ at this point

Example

For the grammar
If I is $\left\{\mathrm{E}^{\prime} \rightarrow\right.$. E$\}$ then closure(I) is

$$
\begin{aligned}
& \mathrm{E}^{\prime} \rightarrow \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \text { id }
\end{aligned}
$$

$$
\begin{aligned}
& E^{\prime} \rightarrow . \mathrm{E} \\
& \mathrm{E} \rightarrow . \mathrm{E}+\mathrm{T} \\
& \mathrm{E} \rightarrow . \mathrm{T} \\
& \mathrm{~T} \rightarrow . \mathrm{T}^{*} \mathrm{~F} \\
& \mathrm{~T} \rightarrow . \mathrm{F} \\
& \mathrm{~F} \rightarrow . \mathrm{id} \\
& \mathrm{~F} \rightarrow .(\mathrm{E})
\end{aligned}
$$

Goto operation

- Goto(I,X) , where I is a set of items and X is a grammar symbol,
- is closure of set of item $A \rightarrow \alpha X . \beta$
- such that $A \rightarrow \alpha . X \beta$ is in I
- Intuitively if I is a set of items for some valid prefix α then goto(I,X) is set of valid items for prefix αX

Goto operation

If I is $\left\{E^{\prime} \rightarrow E ., E \rightarrow E .+T\right\}$ then goto($(,+)$ is

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+. \mathrm{T} \\
& \mathrm{~T} \rightarrow . \mathrm{T}^{*} \mathrm{~F} \\
& \mathrm{~T} \rightarrow . \mathrm{F} \\
& \mathrm{~F} \rightarrow .(\mathrm{E}) \\
& \mathrm{F} \rightarrow . \mathrm{id}
\end{aligned}
$$

Sets of items

C : Collection of sets of $\operatorname{LR}(0)$ items for grammar G'
$C=\left\{\right.$ closure $\left.\left(\left\{S^{\prime} \rightarrow . S\right\}\right)\right\}$
repeat
for each set of items I in C
for each grammar symbol X
if goto (I, X) is not empty and not in C ADD goto(I, X) to C
until no more additions to C

Example

Grammar:
$E^{\prime} \rightarrow E$
$E \rightarrow E+T \mid T$
$T \rightarrow T^{*} F \mid F$
$F \rightarrow(E) \mid$ id
I_{0} : closure $\left(\mathrm{E}^{\prime} \rightarrow\right.$.E)
$\mathrm{E}^{\prime} \rightarrow$. E
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$
$\mathrm{E} \rightarrow \mathrm{T}$
$T \rightarrow . T^{*} F$
$\mathrm{T} \rightarrow$. F
$\mathrm{F} \rightarrow$.(E)
$F \rightarrow$.id
$I_{1}: \operatorname{goto}\left(I_{0}, E\right)$
$\mathrm{E}^{\prime} \rightarrow \mathrm{E}$.
$\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}$

$$
\begin{aligned}
& \mathrm{I}_{2}: \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{~T}\right) \\
& \mathrm{E} \rightarrow \mathrm{~T} \text {. } \\
& \mathrm{T} \rightarrow \mathrm{~T} .{ }^{*} \mathrm{~F} \\
& \mathrm{I}_{3} \text { : goto }\left(\mathrm{I}_{0}, \mathrm{~F}\right) \\
& \mathrm{T} \rightarrow \mathrm{~F} \text {. } \\
& \mathrm{I}_{4} \text { : goto(} \mathrm{I}_{0},(\text {) } \\
& \mathrm{F} \rightarrow \text { (.E) } \\
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \\
& \mathrm{E} \rightarrow \text {. } \\
& \mathrm{T} \rightarrow \text {. }{ }^{*} \mathrm{~F} \\
& \mathrm{~T} \rightarrow \text {. } \mathrm{F} \\
& \mathrm{~F} \rightarrow \text {.(E) } \\
& F \rightarrow \text {.id }
\end{aligned}
$$

I_{5} : goto($\left.I_{0}, \mathrm{id}\right)$
$F \rightarrow$ id.

```
\(\mathrm{I}_{6}\) : goto( \(\left.\mathrm{I}_{1},+\right)\)
    \(\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}\)
    \(\mathrm{T} \rightarrow\). \(\mathrm{T}^{*} \mathrm{~F}\)
    \(\mathrm{T} \rightarrow\). F
    \(\mathrm{F} \rightarrow\).(E)
    \(\mathrm{F} \rightarrow\).id
\(\mathrm{I}_{7}: \operatorname{goto}\left(\mathrm{I}_{2},{ }^{*}\right)\)
    \(\mathrm{T} \rightarrow \mathrm{T}^{*} . \mathrm{F}\)
    \(\mathrm{F} \rightarrow\).(E)
    \(\mathrm{F} \rightarrow\).id
\(\mathrm{I}_{8}: \operatorname{goto}\left(\mathrm{I}_{4}, \mathrm{E}\right)\)
    \(\mathrm{F} \rightarrow\) (E.)
    \(\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}\)
    goto \(\left(I_{4}, T\right)\) is \(I_{2}\)
    goto \(\left(I_{4}, F\right)\) is \(I_{3}\)
    goto( \(\mathrm{I}_{4},()\) is \(\mathrm{I}_{4}\)
    goto( \(I_{4}\), id) is \(I_{5}\)
```


(13)

LR(0) (?) Parse Table

- The information is still not sufficient to help us resolve shift-reduce conflict. For example the state:

$$
\begin{aligned}
& \mathrm{I}_{1}: \mathrm{E}^{\prime} \rightarrow \mathrm{E} . \\
& \mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}
\end{aligned}
$$

- We need some more information to make decisions.

Constructing parse table

- First(α) for a string of terminals and non terminals α is
- Set of symbols that might begin the fully expanded (made of only tokens) version of α
- Follow (X) for a non terminal X is
- set of symbols that might follow the derivation of X in the input stream

Compute first sets

- If X is a terminal symbol then first $(X)=\{X\}$
- If $X \rightarrow \epsilon$ is a production then ϵ is in first(X)
- If X is a non terminal and $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ is a production, then
if for some i, a is in $\operatorname{first}\left(Y_{i}\right)$
and ϵ is in all of first $\left(Y_{j}\right)$ (such that $j<i$) then a is in first (X)
- If ϵ is in first $\left(Y_{1}\right)$... first $\left(Y_{k}\right)$ then ϵ is in first(X)
- Now generalize to a string α of terminals and non-terminals

Example

- For the expression grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{id}
\end{aligned}
$$

$$
\mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \epsilon
$$

$$
\mathrm{T} \rightarrow \mathrm{FT}^{\prime} \quad \mathrm{T}^{\prime} \rightarrow \mathrm{F}^{*} \mathrm{~T}^{\prime} \mid \epsilon
$$

First(E) $=\operatorname{First}(\mathrm{T})=\operatorname{First}(\mathrm{F})$

$$
=\{(, i d\}
$$

First(E')

$$
=\{+, €\}
$$

First(T')

$$
=\{*, \epsilon\}
$$

Compute follow sets

1. Place $\$$ in follow(S) // S is the start symbol
2. If there is a production $A \rightarrow \alpha B \beta$ then everything in $\operatorname{first}(\beta)$ (except ε) is in follow(B)
3. If there is a production $A \rightarrow \alpha B \beta$ and $\operatorname{first}(\beta)$ contains ε
then everything in follow(A) is in follow(B)
4. If there is a production $A \rightarrow \alpha B$
then everything in follow(A) is in follow(B) Last two steps have to be repeated until the follow sets converge.

Example

- For the expression grammar

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \epsilon \\
& \mathrm{T} \rightarrow \mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \text { F }^{\prime} \mid \epsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \text { id }
\end{aligned}
$$

follow $(E)=$ follow $\left.\left(E^{\prime}\right)=\{\$),\right\}$
follow $(T)=$ follow $\left.\left(T^{\prime}\right)=\{\$),+,\right\}$
follow(F) = \{\$,), +, *\}

Construct SLR parse table

- Construct $C=\left\{I_{0}, \ldots, I_{n}\right\}$ the collection of sets of $L R(0)$ items
- If $A \rightarrow \alpha . a \beta$ is in I_{i} and goto $\left(I_{i}, a\right)=I_{j}$ then action $[i, a]=$ shift j
- If $A \rightarrow \alpha$. is in I_{i}
then action $[i, a]=$ reduce $A \rightarrow \alpha$ for all a in follow(A)
- If $S^{\prime} \rightarrow \mathrm{S}$. is in I_{i} then action $[\mathrm{i}, \$]=$ accept
- If goto $\left(I_{i}, A\right)=I_{j}$
then goto $[i, A]=j$ for all non terminals A
- All entries not defined are errors

Notes

- This method of parsing is called SLR (Simple LR)
- LR parsers accept LR(k) languages
- L stands for left to right scan of input
- R stands for rightmost derivation
- k stands for number of lookahead token
- SLR is the simplest of the LR parsing methods. SLR is too weak to handle most languages!
- If an SLR parse table for a grammar does not have multiple entries in any cell then the grammar is unambiguous
- All SLR grammars are unambiguous
- Are all unambiguous grammars in SLR?

Practice Assignment

Construct SLR parse table for following grammar

$$
E \rightarrow E+E|E-E| E * E|E / E|(E) \mid \text { digit }
$$

Show steps in parsing of string

$$
9 * 5+(2+3 * 7)
$$

- Steps to be followed
- Augment the grammar
- Construct set of LR(0) items
- Construct the parse table
- Show states of parser as the given string is parsed

Example

- Consider following grammar and its SLR parse table:
$\mathrm{S}^{\prime} \rightarrow \mathrm{S}$
$S \rightarrow L=R$
$S \rightarrow R$
$L \rightarrow$ R
$L \rightarrow$ id
$\mathrm{R} \rightarrow \mathrm{L}$

$$
\begin{gathered}
\mathrm{I}_{1}: \text { goto }\left(\mathrm{I}_{0}, \mathrm{~S}\right) \\
\mathrm{S}^{\prime} \rightarrow \mathrm{S} . \\
\\
\mathrm{I}_{2}: \operatorname{goto}\left(\mathrm{I}_{0}, \mathrm{~L}\right) \\
\mathrm{S} \rightarrow \mathrm{~L} .=\mathrm{R} \\
\mathrm{R} \rightarrow \mathrm{~L} .
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{I}_{0}: \mathrm{S}^{\prime} & \rightarrow . \mathrm{S} \\
\mathrm{~S} & \rightarrow . \mathrm{L}=\mathrm{R} \\
\mathrm{~S} & \rightarrow . \mathrm{R} \\
\mathrm{~L} & \rightarrow .{ }^{*} \mathrm{R} \\
\mathrm{~L} & \rightarrow . \mathrm{id} \\
\mathrm{R} & \rightarrow . \mathrm{L}
\end{aligned}
$$

Assignment (not to be submitted): Construct rest of the items and the parse table.

SLR parse table for the grammar

	$=$	$*$	id	\$	S	L	R
0		$s 4$	s5		1	2	3
1				acc			
2	s6,r6			r6			
3				r3			
4		$s 4$	$s 5$			8	7
5	r5			r5			
6		$s 4$	s5			8	9
7	r4			r4			
8	r6			r6			
9				r2			

The table has multiple entries in action[2,=]

- There is both a shift and a reduce entry in action[2,=]. Therefore state 2 has a shiftreduce conflict on symbol "=", However, the grammar is not ambiguous.
- Parse id=id assuming reduce action is taken in [2,=]

Stack
0
0 id 5
OL2
0 R 3
input
id=id shift 5
=id
$=i d$
=id
action
reduce by $L \rightarrow$ id reduce by $R \rightarrow L$ error

- if shift action is taken in [2,=]

Stack
input
id=id\$ shift 5
0 id $5 \quad=i d \$$
0L2
$0 L 2=6$
$0 \mathrm{~L} 2=6$ id 5 \$
$0 L 2=6 L 8$
$0 \mathrm{~L} 2=6 \mathrm{R} 9$
0 S 1
\$
=id\$ shift 6 shift 5
reduce by $\mathrm{L} \rightarrow$ id reduce by $\mathrm{R} \rightarrow \mathrm{L}$ reduce by $\mathrm{S} \rightarrow \mathrm{L}=\mathrm{R}$ ACCEPT

Problems in SLR parsing

- No sentential form of this grammar can start with $R=$...
- However, the reduce action in action[2,=] generates a sentential form starting with $\mathrm{R}=$
- Therefore, the reduce action is incorrect
- In SLR parsing method state i calls for reduction on symbol "a", by rule $A \rightarrow \alpha$ if I_{i} contains [$A \rightarrow \alpha$.] and " a " is in follow(A)
- However, when state I appears on the top of the stack, the viable prefix $\beta \alpha$ on the stack may be such that βA can not be followed by symbol "a" in any right sentential form
- Thus, the reduction by the rule $A \rightarrow \alpha$ on symbol " a " is invalid
- SLR parsers cannot remember the left context

Canonical LR Parsing

- Carry extra information in the state so that wrong reductions by $A \rightarrow \alpha$ will be ruled out
- Redefine LR items to include a terminal symbol as a second component (look ahead symbol)
- The general form of the item becomes $[\mathrm{A} \rightarrow$ $\alpha . \beta, a]$ which is called $\operatorname{LR}(1)$ item.
- Item [A \rightarrow., a] calls for reduction only if next input is a. The set of symbols "a"s will be a subset of Follow(A).

Closure(I)

repeat
for each item [$\mathrm{A} \rightarrow \alpha . \mathrm{B} \beta, \mathrm{a}$] in I for each production $B \rightarrow \gamma$ in G^{\prime} and for each terminal b in $\operatorname{First}(\beta a)$ add item $[\mathrm{B} \rightarrow \cdot \gamma, \mathrm{b}]$ to I
until no more additions to \mid

Example

Consider the following grammar

$$
\begin{aligned}
& S^{\prime} \rightarrow \mathrm{S} \\
& \mathrm{~S} \rightarrow \mathrm{CC} \\
& \mathrm{C} \rightarrow \mathrm{cC} \quad \mid \mathrm{d}
\end{aligned}
$$

Compute closure(I) where $\mathrm{I}=\left\{\left[\mathrm{S}^{\prime} \rightarrow\right.\right.$.S, \$] $]$

Example

Construct sets of LR(1) items for the grammar on previous slide

$\mathrm{I}_{0}: \mathrm{S}^{\prime} \rightarrow$. S,	\$	$\left.\mathrm{I}_{4}: \operatorname{goto}_{\Gamma \rightarrow \mathrm{I}}, \mathrm{~d}\right)$	
$\xrightarrow{C} \rightarrow$. C,	c/d		c/d
$\mathrm{C} \rightarrow$.d,	c/d	$\mathrm{I}_{5}:$ goto $\left(\mathrm{I}_{2}, \mathrm{C}\right)$	
$\mathrm{I}_{1}:$ goto $\left(\mathrm{I}_{0}, \mathrm{~S}\right)$		$S \rightarrow$ CC.,	\$
$\mathrm{S}^{\prime} \rightarrow$ S.,	\$	I_{6} : goto ($\mathrm{I}_{2}, \mathrm{c}$)	
I_{2} : goto ($\left.\mathrm{I}_{2} \mathrm{C}\right)$		$\mathrm{C} \rightarrow \mathrm{c} . \mathrm{C}$,	\$
${ }_{2}{ }^{\text {S }}$ S \rightarrow C.C,	\$	$\mathrm{C} \rightarrow$.cC,	\$
$\mathrm{C} \rightarrow$.cC,	\$	\rightarrow.d,	\$
$C \rightarrow$ d,	\$	$\mathrm{I}_{7}: \operatorname{goto}\left(\mathrm{I}_{2}, \mathrm{~d}\right)$	
: goto($\mathrm{l}_{0}, \mathrm{c}$)		$C \rightarrow \text { d., }$	\$
$\mathrm{C} \rightarrow \mathrm{c} . \mathrm{C},$	c/d		
$\mathrm{C} \rightarrow$.cC,	c/d	$\mathrm{I}_{8} . \operatorname{goto}\left(1_{3}, \mathrm{C}\right)$	c/d
$\mathrm{C} \rightarrow$.d,	c/d		
		$\mathrm{I}_{9}:$ goto $\left(\mathrm{I}_{6}, \mathrm{C}\right)$	
		$\mathrm{C} \rightarrow \mathrm{cC}$.,	\$

Construction of Canonical LR parse table

- Construct $C=\left\{I_{0}, \ldots, I_{n}\right\}$ the sets of $\operatorname{LR}(1)$ items.
- If $[A \rightarrow \alpha . a \beta, b]$ is in I_{i} and goto $\left(l_{i}, a\right)=I_{j}$ then action $[\mathrm{i}, \mathrm{a}]=$ shift j
- If $[A \rightarrow \alpha ., a]$ is in I_{i}
then action $[i, a]$ reduce $A \rightarrow \alpha$
- If $\left[S^{\prime} \rightarrow\right.$ S., $\$$] is in I_{i}
then action[i,\$] = accept
- If goto $\left(I_{i}, A\right)=I_{j}$ then goto $[i, A]=j$ for all non terminals A

Parse table

State	c	d	\$	S	C
0	s3	s4		1	2
1			acc		
2	s 6	s 7			5
3	s 3	s 4			8
4	r 3	r 3			
5			r 1		
6	s 6	s 7			9
7			r 3		
8	r 2	r 2			
9			r 2		

Notes on Canonical LR Parser

- Consider the grammar discussed in the previous two slides. The language specified by the grammar is $c^{*} \mathrm{dc}^{*} \mathrm{~d}$.
- When reading input cc...dcc...d the parser shifts cs into stack and then goes into state 4 after reading d . It then calls for reduction by $\mathrm{C} \rightarrow \mathrm{d}$ if following symbol is c or d .
- IF \$ follows the first d then input string is c*d which is not in the language; parser declares an error
- On an error canonical LR parser never makes a wrong shift/reduce move. It immediately declares an error
- Problem: Canonical LR parse table has a large number of states

LALR Parse table

- Look Ahead LR parsers
- Consider a pair of similar looking states (same kernel and different lookaheads) in the set of $L R(1)$ items

$$
\mathrm{I}_{4}: \mathrm{C} \rightarrow \mathrm{~d} ., \mathrm{c} / \mathrm{d} \quad \mathrm{I}_{7}: \mathrm{C} \rightarrow \text { d., \$ }
$$

- Replace I_{4} and I_{7} by a new state I_{47} consisting of ($C \rightarrow$ d., c/d/\$)
- Similarly $I_{3} \& I_{6}$ and $I_{8} \& I_{9}$ form pairs
- Merge $\operatorname{LR}(1)$ items having the same core

Construct LALR parse table

- Construct $C=\left\{I_{0}, \ldots \ldots, I_{n}\right\}$ set of $\operatorname{LR}(1)$ items
- For each core present in LR(1) items find all sets having the same core and replace these sets by their union
- Let $\mathrm{C}^{\prime}=\left\{\mathrm{J}_{0}, \ldots \ldots, \mathrm{~J}_{\mathrm{m}}\right\}$ be the resulting set of items
- Construct action table as was done earlier
- Let $\mathrm{J}=\mathrm{I}_{1} \mathrm{UI}_{2} \ldots \ldots . . \mathrm{U} \mathrm{I}_{\mathrm{k}}$
since $I_{1}, I_{2} \ldots \ldots, I_{k}$ have same core, goto($\left.J, X\right)$ will have he same core

Let $K=\operatorname{goto}\left(I_{1}, X\right) \cup$ goto $\left(I_{2}, X\right) \ldots . . \operatorname{goto}\left(I_{k}, X\right)$ the goto $(J, X)=K$

LALR parse table ...

State	c	d	$\$$	s	c
0	s 36	s 47		1	2
1			acc		
2	s 36	s 47			5
36	s 36	s 47			89
47	r 3	r 3	r 3		
5			r 1		
89	r 2	r 2	r 2		

Notes on LALR parse table

- Modified parser behaves as original except that it will reduce $C \rightarrow d$ on inputs like ccd. The error will eventually be caught before any more symbols are shifted.
- In general core is a set of $\operatorname{LR}(0)$ items and $\operatorname{LR}(1)$ grammar may produce more than one set of items with the same core.
- Merging items never produces shift/reduce conflicts but may produce reduce/reduce conflicts.
- SLR and LALR parse tables have same number of states.

Notes on LALR parse table...

- Merging items may result into conflicts in LALR parsers which did not exist in LR parsers
- New conflicts can not be of shift reduce kind:
- Assume there is a shift reduce conflict in some state of LALR parser with items

$$
\{[X \rightarrow \alpha ., a],[Y \rightarrow \gamma . a \beta, b]\}
$$

- Then there must have been a state in the LR parser with the same core
- Contradiction; because LR parser did not have conflicts
- LALR parser can have new reduce-reduce conflicts
- Assume states

$$
\{[X \rightarrow \alpha ., a],[Y \rightarrow \beta ., b]\} \text { and }\{[X \rightarrow \alpha ., b],[Y \rightarrow \beta ., a]\}
$$

- Merging the two states produces

$$
\{[X \rightarrow \alpha ., a / b],[Y \rightarrow \beta ., a / b]\}
$$

Notes on LALR parse table...

- LALR parsers are not built by first making canonical LR parse tables
- There are direct, complicated but efficient algorithms to develop LALR parsers
- Relative power of various classes
- $\operatorname{SLR}(1) \leq \operatorname{LALR}(1) \leq \operatorname{LR}(1)$
- $\operatorname{SLR}(\mathrm{k}) \leq \operatorname{LALR}(\mathrm{k}) \leq \operatorname{LR}(\mathrm{k})$
$-L L(k) \leq L R(k)$

Error Recovery

- An error is detected when an entry in the action table is found to be empty.
- Panic mode error recovery can be implemented as follows:
- scan down the stack until a state S with a goto on a particular nonterminal A is found.
- discard zero or more input symbols until a symbol a is found that can legitimately follow A.
- stack the state goto[S,A] and resume parsing.
- Choice of A: Normally these are non terminals representing major program pieces such as an expression, statement or a block. For example if A is the nonterminal stmt, a might be semicolon or end.

Parser Generator

- Some common parser generators
- YACC: Yet Another Compiler Compiler
- Bison: GNU Software
- ANTLR: ANother Tool for Language Recognition
- Yacc/Bison source program specification (accept LALR grammars)
declaration
\%\%
translation rules
\%\%
supporting C routines

Yacc and Lex schema

Refer to YACC Manual

Bottom up parsing

- A more powerful parsing technique
- LR grammars - more expensive than LL
- Can handle left recursive grammars
- Can handle virtually all the programming languages
- Natural expression of programming language syntax
- Automatic generation of parsers (Yacc, Bison etc.)
- Detects errors as soon as possible
- Allows better error recovery

