
Top down Parsing

• Following grammar generates types of
Pascal

 type simple
 | id
 | array [simple] of type

 simple integer
 | char
 | num dotdot num

1

Example …

• Construction of a parse tree is done by starting
the root labeled by a start symbol

• repeat following two steps

– at a node labeled with non terminal A select one of the
productions of A and construct children nodes

– find the next node at which subtree is Constructed

2

(Which production?)

(Which node?)

• Parse
 array [num dotdot num] of integer

• Cannot proceed as non terminal “simple” never generates
a string beginning with token “array”. Therefore, requires
back-tracking.

• Back-tracking is not desirable, therefore, take help of a

“look-ahead” token. The current token is treated as look-
ahead token. (restricts the class of grammars)

3

type

simple

Start symbol

Expanded using the
rule type simple

4

array [num dotdot num] of integer

type

simple] type [array

dotdot num num simple

integer

look-ahead

of

Start symbol
Expand using the rule
type array [simple] of type

Left most non terminal
Expand using the rule
Simple num dotdot num

Left most non terminal
Expand using the rule
type simple

Left most non terminal
Expand using the rule
simple integer

all the tokens exhausted
Parsing completed

Recursive descent parsing

 First set:

 Let there be a production
 A

 then First() is the set of tokens that appear as

the first token in the strings generated from

For example :
First(simple) = {integer, char, num}
First(num dotdot num) = {num}

5

Define a procedure for each non terminal

procedure type;
 if lookahead in {integer, char, num}
 then simple
 else if lookahead =
 then begin match();
 match(id)
 end
 else if lookahead = array
 then begin match(array);
 match([);
 simple;
 match(]);
 match(of);
 type
 end
 else error;

 6

procedure simple;
 if lookahead = integer
 then match(integer)
 else if lookahead = char
 then match(char)
 else if lookahead = num
 then begin match(num);
 match(dotdot);
 match(num)
 end
 else
 error;

procedure match(t:token);
 if lookahead = t
 then lookahead = next token
 else error;

7

Left recursion

• A top down parser with production

 A A may loop forever

• From the grammar A A |

 left recursion may be eliminated by
transforming the grammar to

 A R

 R R |

8

9

A

A

A

β α α

A

R

R

β α Є

Parse tree corresponding
to a left recursive grammar

Parse tree corresponding
to the modified grammar

Both the trees generate string βα*

Example
• Consider grammar for arithmetic expressions

 E E + T | T
 T T * F | F
 F (E) | id

• After removal of left recursion the grammar becomes

 E T E’
 E’ + T E’ | Є
 T F T’
 T’ * F T’ | Є
 F (E) | id

10

Removal of left recursion

In general

 A A1 | A2 | ….. |Am

 |1 | 2 | …… | n

transforms to

 A 1A' | 2A' | …..| nA'

 A' 1A' | 2A' |…..| mA' | Є

11

Left recursion hidden due to many
productions

• Left recursion may also be introduced by two or more grammar rules.
For example:

 S Aa | b
 A Ac | Sd | Є

 there is a left recursion because

 S Aa Sda

• In such cases, left recursion is removed systematically

– Starting from the first rule and replacing all the occurrences of the first
non terminal symbol

– Removing left recursion from the modified grammar

12

Removal of left recursion due to
many productions …

• After the first step (substitute S by its rhs in the rules) the
grammar becomes

 S Aa | b

 A Ac | Aad | bd | Є

• After the second step (removal of left recursion) the
grammar becomes

 S Aa | b

 A bdA' | A'

 A' cA' | adA' | Є

13

Left factoring
• In top-down parsing when it is not clear which production to choose

for expansion of a symbol
 defer the decision till we have seen enough input.

 In general if A 1 | 2

 defer decision by expanding A to A'

 we can then expand A’ to 1 or 2

• Therefore A 1 | 2

 transforms to

 A A’
 A’ 1 | 2

14

Dangling else problem again

 Dangling else problem can be handled by left factoring

 stmt if expr then stmt else stmt

 | if expr then stmt

 can be transformed to

 stmt if expr then stmt S'

 S' else stmt | Є

15

Predictive parsers

• A non recursive top down parsing method

• Parser “predicts” which production to use

• It removes backtracking by fixing one production for every
non-terminal and input token(s)

• Predictive parsers accept LL(k) languages
– First L stands for left to right scan of input
– Second L stands for leftmost derivation
– k stands for number of lookahead token

• In practice LL(1) is used

16

Predictive parsing

• Predictive parser can be implemented by
maintaining an external stack

17

input

stack

parser

Parse
table

output

Parse table is a
two dimensional array
M*X,a+ where “X” is a

non terminal and “a” is
a terminal of the grammar

Example

• Consider the grammar

 E T E’

 E' +T E' | Є

 T F T'

 T' * F T' | Є

 F (E) | id

18

Parse table for the grammar

id + * () $

E ETE’ ETE’

E’ E’+TE’ E’Є E’Є

T TFT’ TFT’

T’ T’Є T’*FT’ T’Є T’Є

F Fid F(E)

19

Blank entries are error states. For example
E cannot derive a string starting with ‘+’

Parsing algorithm
• The parser considers 'X' the symbol on top of stack, and 'a' the

current input symbol

• These two symbols determine the action to be taken by the parser

• Assume that '$' is a special token that is at the bottom of the stack

and terminates the input string

 if X = a = $ then halt

 if X = a ≠ $ then pop(x) and ip++

 if X is a non terminal
 then if M[X,a] = {X UVW}
 then begin pop(X); push(W,V,U)
 end
 else error

20

Example
Stack input action

$E id + id * id $ expand by ETE’

$E’T id + id * id $ expand by TFT’

$E’T’F id + id * id $ expand by Fid

$E’T’id id + id * id $ pop id and ip++

$E’T’ + id * id $ expand by T’Є

$E’ + id * id $ expand by E’+TE’

$E’T+ + id * id $ pop + and ip++

$E’T id * id $ expand by TFT’

21

Example …
Stack input action

$E’T’F id * id $ expand by Fid

$E’T’id id * id $ pop id and ip++

$E’T’ * id $ expand by T’*FT’

$E’T’F* * id $ pop * and ip++

$E’T’F id $ expand by Fid

$E’T’id id $ pop id and ip++

$E’T’ $ expand by T’Є

$E’ $ expand by E’Є

$ $ halt

22

Constructing parse table
• Table can be constructed if for every non terminal, every lookahead

symbol can be handled by at most one production

• First(α) for a string of terminals and non terminals α is
– Set of symbols that might begin the fully expanded (made of only tokens)

version of α

• Follow(X) for a non terminal X is

– set of symbols that might follow the derivation of X in the input stream

23

first follow

X

Compute first sets

• If X is a terminal symbol then First(X) = {X}

• If X Є is a production then Є is in First(X)

• If X is a non terminal
 and X YlY2 … Yk is a production
 then
 if for some i, a is in First(Yi)
 and Є is in all of First(Yj) (such that j<i)
 then a is in First(X)

• If Є is in First (Y1) … First(Yk) then Є is in First(X)

24

Example

• For the expression grammar

 E T E’

 E' +T E' | Є

 T F T'

 T' * F T' | Є

 F (E) | id

 First(E) = First(T) = First(F) = { (, id }

 First(E') = {+, Є}

 First(T') = { *, Є}

25

Compute follow sets

 1. Place $ in follow(S)

 2. If there is a production A → αBβ

 then everything in first(β) (except ε) is in follow(B)

 3. If there is a production A → αB
 then everything in follow(A) is in follow(B)

 4. If there is a production A → αBβ
 and First(β) contains ε
 then everything in follow(A) is in follow(B)

 Since follow sets are defined in terms of follow sets last two steps

have to be repeated until follow sets converge

26

Example

• For the expression grammar

 E T E’

 E' + T E' | Є

 T F T'

 T' * F T' | Є

 F (E) | id

 follow(E) = follow(E’) = , $,) -
 follow(T) = follow(T’) = , $,), + -
 follow(F) = { $,), +, *}

27

Construction of parse table
• for each production A α do

– for each terminal ‘a’ in first(α)

 M[A,a] = A α

– If Є is in First(α)

M[A,b] = A α

 for each terminal b in follow(A)

– If ε is in First(α) and $ is in follow(A)

 M[A,$] = A α

• A grammar whose parse table has no multiple entries is called LL(1)

28

Practice Assignment

• Construct LL(1) parse table for the expression grammar
 bexpr bexpr or bterm | bterm
 bterm bterm and bfactor | bfactor
 bfactor not bfactor | (bexpr) | true | false

• Steps to be followed

– Remove left recursion
– Compute first sets
– Compute follow sets
– Construct the parse table

29

Error handling
• Stop at the first error and print a message

– Compiler writer friendly
– But not user friendly

• Every reasonable compiler must recover from errors and identify as

many errors as possible

• However, multiple error messages due to a single fault must be
avoided

• Error recovery methods

– Panic mode

– Phrase level recovery

– Error productions

– Global correction

30

Panic mode
• Simplest and the most popular method

• Most tools provide for specifying panic mode
recovery in the grammar

• When an error is detected

– Discard tokens one at a time until a set of tokens is
found whose role is clear

– Skip to the next token that can be placed reliably in the
parse tree

31

Panic mode …

• Consider following code
 begin
 a = b + c;
 x = p r ;
 h = x < 0;
 end;

• The second expression has syntax error

• Panic mode recovery for begin-end block
 skip ahead to next ‘;’ and try to parse the next expression

• It discards one expression and tries to continue parsing

• May fail if no further ‘;’ is found

32

Phrase level recovery

• Make local correction to the input

• Works only in limited situations

– A common programming error which is easily detected

– For example insert a “;” after closing “-” of a class
definition

• Does not work very well!

33

Error productions

• Add erroneous constructs as productions in the grammar

• Works only for most common mistakes which can be
easily identified

• Essentially makes common errors as part of the grammar

• Complicates the grammar and does not work very well

34

Global corrections

• Considering the program as a whole find a correct
“nearby” program

• Nearness may be measured using certain metric

• PL/C compiler implemented this scheme:
anything could be compiled!

• It is complicated and not a very good idea!

35

Error Recovery in LL(1) parser

• Error occurs when a parse table entry M[A,a] is empty

• Skip symbols in the input until a token in a selected set
(synch) appears

• Place symbols in follow(A) in synch set. Skip tokens until
an element in follow(A) is seen.

 Pop(A) and continue parsing

• Add symbol in first(A) in synch set. Then it may be
possible to resume parsing according to A if a symbol in
first(A) appears in input.

36

Practice Assignment

• Reading assignment: Read about error
recovery in LL(1) parsers

• Assignment to be submitted:
– introduce synch symbols (using both follow

and first sets) in the parse table created for the
boolean expression grammar in the previous
assignment

– Parse “not (true and or false)” and show how
error recovery works

37

