Top down Parsing

 Following grammar generates types of Pascal

```
type → simple
| 1 id
| array [ simple] of type
simple → integer
| char
| num dotdot num
```

Example ...

- Construction of a parse tree is done by starting the root labeled by a start symbol
- repeat following two steps
 - at a node labeled with non terminal A select one of the productions of A and construct children nodes
 (Which production?)
 - find the next node at which subtree is Constructed

(Which node?)

 Parse array [num dotdot num] of integer

- Cannot proceed as non terminal "simple" never generates a string beginning with token "array". Therefore, requires back-tracking.
- Back-tracking is not desirable, therefore, take help of a "look-ahead" token. The current token is treated as lookahead token. (restricts the class of grammars)

Recursive descent parsing

First set:

Let there be a production $A \rightarrow \alpha$

then First(α) is the set of tokens that appear as the first token in the strings generated from α

For example : First(simple) = {integer, char, num} First(num dotdot num) = {num} Define a procedure for each non terminal

```
procedure type;
 if lookahead in {integer, char, num}
  then simple
  else if lookahead = 1
        then begin match( \uparrow );
                  match(id)
             end
        else if lookahead = array
              then begin match(array);
                         match([);
                         simple;
                         match(]);
                         match(of);
                         type
                   end
              else error;
```

procedure simple; if lookahead = integer then match(integer) else if lookahead = char then match(char) else if lookahead = num then begin match(num); match(dotdot); match(num) end else error; procedure match(t:token); if lookahead = t then lookahead = next token

else error;

Left recursion

- A top down parser with production A \rightarrow A α may loop forever
- From the grammar A \rightarrow A $\alpha \mid \beta$ left recursion may be eliminated by transforming the grammar to

 $\begin{array}{l} \mathsf{A} \to \beta \ \mathsf{R} \\ \mathsf{R} \to \alpha \ \mathsf{R} \mid \epsilon \end{array}$

Both the trees generate string $\beta \alpha^*$

Example

• Consider grammar for arithmetic expressions

 $E \rightarrow E + T | T$ $T \rightarrow T * F | F$ $F \rightarrow (E) | id$

• After removal of left recursion the grammar becomes

$$E \rightarrow T E'$$

$$E' \rightarrow + T E' \mid E$$

$$T \rightarrow F T'$$

$$T' \rightarrow * F T' \mid E$$

$$F \rightarrow (E) \mid id$$

Removal of left recursion

In general

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \dots \mid |A\alpha_m|$$
$$|\beta_1 \mid \beta_2 \mid \dots \mid |\beta_n|$$

transforms to

 $A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$ $A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \epsilon$

Left recursion hidden due to many productions

• Left recursion may also be introduced by two or more grammar rules. For example:

 $S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Sd \mid E$

there is a left recursion because

 $S \to Aa \to Sda$

- In such cases, left recursion is removed systematically
 - Starting from the first rule and replacing all the occurrences of the first non terminal symbol
 - Removing left recursion from the modified grammar

Removal of left recursion due to many productions ...

• After the first step (substitute S by its rhs in the rules) the grammar becomes

 $S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Aad \mid bd \mid E$

• After the second step (removal of left recursion) the grammar becomes

 $S \rightarrow Aa \mid b$ $A \rightarrow bdA' \mid A'$ $A' \rightarrow cA' \mid adA' \mid E$

Left factoring

 In top-down parsing when it is not clear which production to choose for expansion of a symbol defer the decision till we have seen enough input.

```
In general if A \rightarrow \alpha \beta_1 \mid \alpha \beta_2
```

defer decision by expanding A to αA^{\prime}

we can then expand A' to β_1 or β_2

• Therefore $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$

transforms to

 $\begin{array}{c} \mathsf{A} \not \rightarrow \alpha \mathsf{A}' \\ \mathsf{A}' \not \rightarrow \beta_1 \mid \beta_2 \end{array}$

Dangling else problem again

Dangling else problem can be handled by left factoring

stmt → if expr then stmt else stmt | if expr then stmt

can be transformed to

stmt \rightarrow if expr then stmt S' S' \rightarrow else stmt | \in

Predictive parsers

- A non recursive top down parsing method
- Parser "predicts" which production to use
- It removes backtracking by fixing one production for every non-terminal and input token(s)
- Predictive parsers accept LL(k) languages
 - First L stands for left to right scan of input
 - Second L stands for leftmost derivation
 - k stands for number of lookahead token
- In practice LL(1) is used

Predictive parsing

 Predictive parser can be implemented by maintaining an external stack

Parse table is a two dimensional array M[X,a] where "X" is a non terminal and "a" is a terminal of the grammar

Example

• Consider the grammar

 $E \rightarrow T E'$ $E' \rightarrow +T E' \mid E$ $T \rightarrow F T'$ $T' \rightarrow F T' \mid E$ $F \rightarrow (E) \mid id$

Parse table for the grammar

	id	+	*	()	\$
E	E→TE'			E→TE'		
E'		E'→+TE'			E'→€	E'→€
Т	T → FT'			T→FT'		
T'		T'→€	T'→*FT'		т'→€	T'→€
F	F→id			F→(E)		

Blank entries are error states. For example E cannot derive a string starting with '+'

Parsing algorithm

- The parser considers 'X' the symbol on top of stack, and 'a' the current input symbol
- These two symbols determine the action to be taken by the parser
- Assume that '\$' is a special token that is at the bottom of the stack and terminates the input string

if X = a = \$ then halt

if $X = a \neq $$ then pop(x) and ip++

```
if X is a non terminal
then if M[X,a] = \{X \rightarrow UVW\}
then begin pop(X); push(W,V,U)
end
else error
```

Example

Stack	input	action
\$E	id + id * id \$	expand by $E \rightarrow TE'$
\$E'T	id + id * id \$	expand by T \rightarrow FT'
\$E'T'F	id + id * id \$	expand by $F \rightarrow id$
\$E'T'id	id + id * id \$	pop id and ip++
\$E'T'	+ id * id \$	expand by T' \rightarrow E
\$E'	+ id * id \$	expand by $E' \rightarrow +TE'$
\$E'T+	+ id * id \$	pop + and ip++
\$E ' T	id * id \$	expand by T \rightarrow FT'

Example ...

Stack	input	action
\$E'T'F	id * id \$	expand by $F \rightarrow id$
\$E'T'id	id * id \$	pop id and ip++
\$E'T'	* id \$	expand by T'→*FT'
\$E'T'F*	* id \$	pop * and ip++
\$E'T'F	id \$	expand by $F \rightarrow id$
\$E'T'id	id \$	pop id and ip++
\$E'T '	\$	expand by $T' \rightarrow \epsilon$
\$E'	\$	expand by $E' \rightarrow E$
\$	\$	halt

Constructing parse table

- Table can be constructed if for every non terminal, every lookahead symbol can be handled by at most one production
- First(α) for a string of terminals and non terminals α is
 - Set of symbols that might begin the fully expanded (made of only tokens) version of $\boldsymbol{\alpha}$
- Follow(X) for a non terminal X is
 - set of symbols that might follow the derivation of X in the input stream

Compute first sets

- If X is a terminal symbol then First(X) = {X}
- If $X \rightarrow E$ is a production then E is in First(X)
- If X is a non terminal and X → Y₁Y₂ ... Y_k is a production then if for some i, a is in First(Y_i) and ∈ is in all of First(Y_j) (such that j<i) then a is in First(X)
- If \in is in First (Y₁) ... First(Y_k) then \in is in First(X)

Example

• For the expression grammar $E \rightarrow T E'$ $E' \rightarrow +T E' \mid E$ $T \rightarrow F T'$ $T' \rightarrow F T' \mid E$ $F \rightarrow (E) \mid id$

First(E) = First(T) = First(F) = { (, id } First(E') = $\{+, \in\}$ First(T') = $\{*, \in\}$

Compute follow sets

1. Place \$ in follow(S)

2. If there is a production $A \rightarrow \alpha B\beta$ then everything in first(β) (except ϵ) is in follow(B)

3. If there is a production $A \rightarrow \alpha B$ then everything in follow(A) is in follow(B)

4. If there is a production $A \rightarrow \alpha B\beta$ and First(β) contains ϵ then everything in follow(A) is in follow(B)

Since follow sets are defined in terms of follow sets last two steps have to be repeated until follow sets converge

Example

• For the expression grammar $E \rightarrow T E'$ $E' \rightarrow + T E' \mid E$ $T \rightarrow F T'$ $T' \rightarrow F T' \mid E$ $F \rightarrow (E) \mid id$

```
follow(E) = follow(E') = { $, } }
follow(T) = follow(T') = { $, }, + }
follow(F) = { $, }, +, *}
```

Construction of parse table

- for each production $A \rightarrow \alpha$ do
 - for each terminal 'a' in first(α)

 $\mathsf{M}[\mathsf{A},\mathsf{a}] = \mathsf{A} \xrightarrow{} \alpha$

- If \in is in First(α)

 $\mathsf{M}[\mathsf{A},\mathsf{b}] = \mathsf{A} \xrightarrow{} \alpha$

for each terminal b in follow(A)

- If ε is in First(α) and \$ is in follow(A) M[A,\$] = A $\rightarrow \alpha$
- A grammar whose parse table has no multiple entries is called LL(1)

Practice Assignment

- Construct LL(1) parse table for the expression grammar bexpr → bexpr or bterm | bterm
 bterm → bterm and bfactor | bfactor
 bfactor → not bfactor | (bexpr) | true | false
- Steps to be followed
 - Remove left recursion
 - Compute first sets
 - Compute follow sets
 - Construct the parse table

Error handling

- Stop at the first error and print a message
 - Compiler writer friendly
 - But not user friendly
- Every reasonable compiler must recover from errors and identify as many errors as possible
- However, multiple error messages due to a single fault must be avoided
- Error recovery methods
 - Panic mode
 - Phrase level recovery
 - Error productions
 - Global correction

Panic mode

- Simplest and the most popular method
- Most tools provide for specifying panic mode recovery in the grammar
- When an error is detected
 - Discard tokens one at a time until a set of tokens is found whose role is clear
 - Skip to the next token that can be placed reliably in the parse tree

Panic mode ...

• Consider following code

```
begin
a = b + c;
x = p r ;
h = x < 0;
end;
```

- The second expression has syntax error
- Panic mode recovery for begin-end block skip ahead to next ';' and try to parse the next expression
- It discards one expression and tries to continue parsing
- May fail if no further ';' is found

Phrase level recovery

- Make local correction to the input
- Works only in limited situations
 - A common programming error which is easily detected
 - For example insert a ";" after closing "}" of a class definition
- Does not work very well!

Error productions

- Add erroneous constructs as productions in the grammar
- Works only for most common mistakes which can be easily identified
- Essentially makes common errors as part of the grammar
- Complicates the grammar and does not work very well

Global corrections

- Considering the program as a whole find a correct "nearby" program
- Nearness may be measured using certain metric
- PL/C compiler implemented this scheme: anything could be compiled!
- It is complicated and not a very good idea!

Error Recovery in LL(1) parser

- Error occurs when a parse table entry M[A,a] is empty
- Skip symbols in the input until a token in a selected set (synch) appears
- Place symbols in follow(A) in synch set. Skip tokens until an element in follow(A) is seen.
 Pop(A) and continue parsing
- Add symbol in first(A) in synch set. Then it may be possible to resume parsing according to A if a symbol in first(A) appears in input.

Practice Assignment

- Reading assignment: Read about error recovery in LL(1) parsers
- Assignment to be submitted:
 - introduce synch symbols (using both follow and first sets) in the parse table created for the boolean expression grammar in the previous assignment
 - Parse "not (true and or false)" and show how error recovery works