
Syntax Analysis
• Check syntax and construct abstract syntax tree

• Error reporting and recovery

• Model using context free grammars

• Recognize using Push down automata/Table
Driven Parsers

1

if

== = ;

b 0 a b

Limitations of regular languages
• How to describe language syntax precisely and

conveniently. Can regular expressions be
used?

• Many languages are not regular, for example,
string of balanced parentheses
– ((((…))))
– { (i)i | i ≥ 0 }
– There is no regular expression for this language

• A finite automata may repeat states, however,
it cannot remember the number of times it
has been to a particular state

• A more powerful language is needed to
describe a valid string of tokens

2

Syntax definition
• Context free grammars <T, N, P, S>

– T: a set of tokens (terminal symbols)
– N: a set of non terminal symbols
– P: a set of productions of the form

nonterminal →String of terminals & non terminals
– S: a start symbol

• A grammar derives strings by beginning with a
start symbol and repeatedly replacing a non
terminal by the right hand side of a production
for that non terminal.

• The strings that can be derived from the start
symbol of a grammar G form the language L(G)
defined by the grammar.

3

Examples
• String of balanced parentheses

S → (S) S | Є

• Grammar
list → list + digit

| list – digit
| digit

digit → 0 | 1 | … | 9

Consists of the language which is a list of digit
separated by + or -.

4

Derivation

list  list + digit
 list – digit + digit
 digit – digit + digit
 9 – digit + digit
 9 – 5 + digit
 9 – 5 + 2

Therefore, the string 9-5+2 belongs to the
language specified by the grammar
The name context free comes from the fact
that use of a production X  … does not
depend on the context of X

5

Examples …

• Simplified Grammar for C block

block  ‘{‘ decls statements ‘}’

statements  stmt-list | Є

stmt–list  stmt-list stmt ‘;’

| stmt ‘;’

decls decls declaration | Є

declaration  …

6

Syntax analyzers
• Testing for membership whether w belongs

to L(G) is just a “yes” or “no” answer

• However the syntax analyzer
– Must generate the parse tree

– Handle errors gracefully if string is not in the
language

• Form of the grammar is important
– Many grammars generate the same language

– Tools are sensitive to the grammar

7

What syntax analysis cannot do!

• To check whether variables are of types on
which operations are allowed

• To check whether a variable has been
declared before use

• To check whether a variable has been
initialized

• These issues will be handled in semantic
analysis

8

Derivation
• If there is a production A  α then we

say that A derives α and is denoted by A
 α

• α A β α γ β if A  γ is a production

• If α1  α2  …  αn then α1  αn

• Given a grammar G and a string w of
terminals in L(G) we can write S  w

• If S  α where α is a string of terminals
and non terminals of G then we say
that α is a sentential form of G

9

+

+

*

Derivation …
• If in a sentential form only the leftmost non

terminal is replaced then it becomes leftmost
derivation

• Every leftmost step can be written as
wAγlm* wδγ
where w is a string of terminals and A  δ is a
production

• Similarly, right most derivation can be defined
• An ambiguous grammar is one that produces

more than one leftmost (rightmost) derivation
of a sentence

10

Parse tree
• shows how the start symbol of a

grammar derives a string in the language

• root is labeled by the start symbol

• leaf nodes are labeled by tokens

• Each internal node is labeled by a non
terminal

• if A is the label of anode and x1, x2, …xn
are labels of the children of that node
then A  x1 x2 … xn is a production in the
grammar

11

Example

Parse tree for 9-5+2

12

list

list

list

digit

digit

+

-

digit

9

5

2

Ambiguity

• A Grammar can have more than one
parse tree for a string

• Consider grammar

list  list+ list

| list – list

| 0 | 1 | … | 9

• String 9-5+2 has two parse trees

13

14

list + list

- listlist

9

list

2

5

list

list - list

9 list + list

5 2

Ambiguity …
• Ambiguity is problematic because meaning

of the programs can be incorrect
• Ambiguity can be handled in several ways

– Enforce associativity and precedence
– Rewrite the grammar (cleanest way)

• There is no algorithm to convert
automatically any ambiguous grammar to
an unambiguous grammar accepting the
same language

• Worse, there are inherently ambiguous
languages!

15

Ambiguity in Programming Lang.

• Dangling else problem

stmt if expr stmt

| if expr stmt else stmt

• For this grammar, the string

if e1 if e2 then s1 else s2

has two parse trees

16

17

stmt

if expr stmt else stmt

expr stmtife1 s2

e2 s1
stmt

if expr stmt

stmt else stmtexprife1

e2 s1 s2

if e1
if e2

s1
else s2

if e1
if e2

s1
else s2

Resolving dangling else problem
• General rule: match each else with the closest

previous unmatched if. The grammar can be
rewritten as

stmt matched-stmt

| unmatched-stmt

matched-stmt  if expr matched-stmt

else matched-stmt

| others

unmatched-stmt  if expr stmt

| if expr matched-stmt

else unmatched-stmt 18

Associativity

• If an operand has operator on both the
sides, the side on which operator takes this
operand is the associativity of that
operator

• In a+b+c b is taken by left +
• +, -, *, / are left associative
• ^, = are right associative
• Grammar to generate strings with right

associative operators
right  letter = right | letter
letter  a| b |…| z

19

Precedence

• String a+5*2 has two possible
interpretations because of two
different parse trees corresponding to

(a+5)*2 and a+(5*2)

• Precedence determines the correct
interpretation.

• Next, an example of how precedence
rules are encoded in a grammar

20

Precedence/Associativity in the
Grammar for Arithmetic Expressions

Ambiguous
E  E + E

| E * E
| (E)
| num | id

3 + 2 + 5
3 + 2 * 5

21

• Unambiguous,
with precedence
and associativity
rules honored
E  E + T | T
T  T * F | F
F  (E) | num

| id

Parsing

• Process of determination whether a string
can be generated by a grammar

• Parsing falls in two categories:
– Top-down parsing:

Construction of the parse tree starts at the root
(from the start symbol) and proceeds towards
leaves (token or terminals)

– Bottom-up parsing:

Construction of the parse tree starts from the
leaf nodes (tokens or terminals of the grammar)
and proceeds towards root (start symbol)

22

