Syntax Analysis

Check syntax and construct abstract syntax tree

[
-

it (| b|]==]0])]a

Error reporting and recovery
Model using context free grammars

Recognize using Push down automata/Table
Driven Parsers

Limitations of regular languages

e How to describe language syntax precisely and
conveniently. Can regular expressions be

used?

e Many languages are not regular, for example,
string of balanced parentheses

= ((((...))
-{()1i20}
— There is no regular expression for this language

e A finite automata may repeat states, however,
it cannot remember the number of times it
has been to a particular state

e A more powerful language is needed to
describe a valid string of tokens

Syntax definition

e Context free grammars <T, N, P, 5>
— T: a set of tokens (terminal symbols)
— N: a set of non terminal symbols
— P: a set of productions of the form
nonterminal —=String of terminals & non terminals
— S: a start symbol

e A grammar derives strings by beginning with a
start symbol and repeatedly replacing a non
terminal by the right hand side of a production
for that non terminal.

e The strings that can be derived from the start
symbol of a grammar G form the language L(G)
defined by the grammar.

Examples

e String of balanced parentheses
S=>(S)S|€

e Grammar
list — list + digit
| list — digit
| digit
digit—> 0|1 .. | 9

Consists of the language which is a list of digit
separated by + or -.

Derivation

list = list + digit
=> list — digit + digit
=>» digit — digit + digit
= 9 — digit + digit
= 9 -5 + digit
2> 9-5+2

Therefore, the string 9-5+2 belongs to the
language specified by the grammar

The name context free comes from the fact
that use of a production X = ... does not
depend on the context of X

Examples ...

e Simplified Grammar for C block
block =2 ‘{‘ decls statements ‘}’
statements 2> stmt-list | €
stmt—list 2 stmt-list stmt *;’

| stmt

decls = decls declaration | €

declaration =2 ...

Syntax analyzers

e Testing for membership whether w belongs
to L(G) is just a “yes” or “no” answer

e However the syntax analyzer
— Must generate the parse tree

— Handle errors gracefully if string is not in the
language

e Form of the grammar is important

— Many grammars generate the same language
— Tools are sensitive to the grammar

What syntax analysis cannot do!

e To check whether variables are of types on
which operations are allowed

e To check whether a variable has been
declared before use

e To check whether a variable has been
initialized

e These issues will be handled in semantic
analysis

Derivation

e |f there is a production A 2 o then we

say that A derives a and is denoted by A
= o

ca AR = ayBif A2 vyisaproduction
e lfa, ® o, =® ... ® a, then a, =+

e Given a grammar G and a string w of
terminals in L(G) we can write S =&'w

e I[f S =" awhere a is a string of terminals
and non terminals of G then we say
that a is a sentential form of G

Derivation ...

e |f in a sentential form only the leftmost non
terminal is replaced then it becomes leftmost
derivation

e Every leftmost step can be written as
wAy =2 /M* woy
where w is a string of terminalsand A 2 6§ is a
production

e Similarly, right most derivation can be defined

e An ambiguous grammar is one that produces
more than one leftmost (rightmost) derivation
of a sentence

10

Parse tree

e shows how the start symbol of a
grammar derives a string in the language

e rootis labeled by the start symbol
e |eaf nodes are labeled by tokens

e Each internal node is labeled by a non
terminal

e if Ais the label of anode and x,, x,, ...x,
are labels of the children of that node
then A = x, x, ... x,, is a production in the
grammar

11

Example

Parse tree for 9-5+2

list

PN

list + digit

P N

list - digit 2

digit 5

9

12

Ambiguity
e A Grammar can have more than one
parse tree for a string
e Consider grammar
list 2 list+ list
list — list
O|1]..]9

e String 9-5+2 has two parse trees

13

list list

PR I

list + list list - list
P RN
list - list 2 9 list + list
\ \ \ \
9 5 5 2

14

e Am
of t

e Am

Ambiguity ...

niguity is problematic because meaning
ne programs can be incorrect

oiguity can be handled in several ways

— Enforce associativity and precedence
— Rewrite the grammar (cleanest way)

e There is no algorithm to convert
automatically any ambiguous grammar to

an unambiguous grammar accepting the
same language

e Worse, there are inherently ambiguous

languages!

15

Ambiguity in Programming Lang.

e Dangling else problem
stmt — if expr stmt
| if expr stmt else stmt
e For this grammar, the string
if el if e2 then sl else s2
has two parse trees

16

if el
if e2 ST
s1 /\
else s2 ”
if expr stmt else stmt
if el if expr stmt S2
if e2 ’ \
sl
else s2 e? s1
stmt
if expr stmt
el if expr stmt else stmt

l \ \

e sl S2 17

Resolving dangling else problem

e General rule: match each else with the closest
previous unmatched if. The grammar can be
rewritten as

stmt — matched-stmt

| unmatched-stmt
matched-stmt — if expr matched-stmt

else matched-stmt
| others
unmatched-stmt — if expr stmt
| if expr matched-stmt
else unmatched-stmt

Associativity

If an operand has operator on both the
sides, the side on which operator takes this
operand is the associativity of that
operator

In a+b+c b is taken by left +
+ - * [are left associative
A = are right associative

Grammar to generate strings with right
associative operators

right = letter = right | letter
letter 2> a| b |...] z

19

Precedence

e String a+5*2 has two possible
interpretations because of two
different parse trees corresponding to

(a+5)*2 and a+(5*2)

e Precedence determines the correct
Interpretation.

e Next, an example of how precedence
rules are encoded in a grammar

20

Precedence/Associativity in the
Grammar for Arithmetic Expressions

Ambiguous e Unambiguous,
EDE4E with precedence
and associativity

E*E rules honored
(E) E2E+T|T
num | id T>T*F|F
F2>(E) | num
3+2+5 | id

3+2*5

21

Parsing

e Process of determination whether a string
can be generated by a grammar

e Parsing falls in two categories:
— Top-down parsing:
Construction of the parse tree starts at the root
(from the start symbol) and proceeds towards
leaves (token or terminals)
— Bottom-up parsing:

Construction of the parse tree starts from the
leaf nodes (tokens or terminals of the grammar)
and proceeds towards root (start symbol)

22

