
Syntax Analysis
• Check syntax and construct abstract syntax tree

• Error reporting and recovery

• Model using context free  grammars

• Recognize using Push down automata/Table 
Driven Parsers
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Limitations of regular languages
• How to describe language syntax precisely and 

conveniently. Can regular expressions be 
used?

• Many languages are not regular, for example, 
string of balanced parentheses
– ((((…))))
– { (i)i | i ≥ 0 }
– There is no regular expression for this language

• A finite automata may repeat states, however, 
it cannot remember the number of times it 
has been to a particular state

• A more powerful language is needed to 
describe a valid string of tokens
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Syntax definition
• Context free grammars <T, N, P, S>

– T: a set of tokens (terminal symbols)
– N: a set of non terminal symbols
– P: a set of productions of the form 

nonterminal →String of terminals  & non terminals
– S: a start symbol

• A grammar derives strings by beginning with a 
start symbol and repeatedly replacing a non 
terminal by the right hand side of a production  
for that non terminal.

• The strings that can be derived from the start 
symbol of a grammar G form the language L(G) 
defined by the grammar.
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Examples
• String of balanced parentheses

S → ( S ) S | Є

• Grammar
list   → list + digit

|  list – digit
|  digit

digit → 0 | 1 |  …  |  9

Consists of the language which is a list of digit  
separated by + or -.
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Derivation 

list    list + digit
 list – digit + digit
 digit – digit + digit
 9 – digit + digit
 9 – 5 + digit
 9 – 5 + 2

Therefore, the string 9-5+2 belongs to the 
language specified by the grammar
The name context free comes from the fact 
that use of a production X  … does not 
depend on the context of X

5



Examples …

• Simplified Grammar for C block

block   ‘{‘ decls statements ‘}’

statements   stmt-list  |  Є

stmt–list   stmt-list stmt ‘;’

| stmt ‘;’

decls decls declaration | Є

declaration  …
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Syntax analyzers
• Testing for membership whether w belongs 

to L(G) is just a “yes” or “no” answer

• However the syntax analyzer
– Must generate the parse tree

– Handle errors gracefully if string is not in the 
language

• Form of the grammar is important
– Many grammars generate the same language

– Tools are sensitive to the grammar
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What syntax analysis cannot do!

• To check whether variables are of types on 
which operations are allowed 

• To check whether a variable has been 
declared before use

• To check whether a variable has been 
initialized

• These issues will be handled in semantic 
analysis
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Derivation
• If there is a production A  α then we 

say that A derives α and is denoted by A 
 α

• α A β α γ β if A  γ is a production

• If α1  α2  …  αn then α1  αn

• Given a grammar G and a string w of 
terminals in L(G) we can write S  w

• If S  α where α is a string of terminals 
and non terminals of G then we say  
that α is a sentential form of G
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Derivation …
• If in a sentential form only the leftmost non 

terminal is replaced then it becomes leftmost 
derivation

• Every  leftmost step can be written as 
wAγlm* wδγ
where w is a string of terminals and A  δ is a 
production

• Similarly, right most derivation can be defined
• An ambiguous grammar is one that produces 

more than one leftmost (rightmost) derivation 
of a sentence
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Parse tree
• shows how the start symbol of a 

grammar derives a string  in the language

• root is labeled by the start symbol

• leaf nodes are labeled by tokens

• Each internal node is labeled by a non 
terminal

• if A is the label of anode and x1, x2, …xn
are labels of the children of that node 
then A  x1 x2 … xn is a production in the 
grammar
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Example

Parse tree for 9-5+2
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Ambiguity

• A Grammar can have more than one 
parse tree for a string

• Consider grammar

list  list+ list

| list – list

| 0 | 1 | … | 9

• String 9-5+2 has two parse trees
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Ambiguity …
• Ambiguity is problematic because meaning 

of the programs can be incorrect
• Ambiguity can be handled in several ways

– Enforce associativity and precedence
– Rewrite the grammar (cleanest way)

• There is no algorithm to convert 
automatically any ambiguous grammar to 
an unambiguous grammar accepting the 
same language

• Worse, there are inherently ambiguous 
languages!
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Ambiguity in Programming Lang.

• Dangling else problem

stmt if expr stmt

| if expr stmt else stmt

• For this grammar, the string

if e1 if e2 then s1 else s2

has two parse trees
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Resolving dangling else problem
• General rule: match each else with the closest 

previous unmatched if. The grammar can be 
rewritten as

stmt matched-stmt

| unmatched-stmt

matched-stmt  if expr matched-stmt

else matched-stmt

| others

unmatched-stmt  if expr stmt

| if expr matched-stmt

else unmatched-stmt 18



Associativity

• If an operand has operator on both the 
sides, the side on which operator takes this 
operand is the associativity of that 
operator

• In a+b+c   b is taken by left +
• +, -, *, / are left associative
• ^, = are right associative
• Grammar to generate strings with right 

associative operators
right  letter = right | letter
letter  a| b |…| z
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Precedence

• String a+5*2 has two possible 
interpretations because of two 
different parse trees corresponding to

(a+5)*2 and a+(5*2)

• Precedence determines the correct 
interpretation.

• Next, an example of how precedence 
rules are encoded in a grammar
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Precedence/Associativity in the 
Grammar for Arithmetic Expressions

Ambiguous
E  E + E 

|   E * E
|   (E)
|   num | id

3 + 2 + 5
3 + 2 * 5

21

• Unambiguous, 
with precedence 
and associativity 
rules honored
E  E + T | T
T  T * F | F
F  ( E ) | num

|  id



Parsing

• Process of determination whether a string 
can be generated by a grammar 

• Parsing falls in two categories:
– Top-down parsing: 

Construction of the parse tree starts at the root 
(from the start symbol) and proceeds towards 
leaves (token or terminals)

– Bottom-up parsing: 

Construction of the parse tree starts from the 
leaf nodes (tokens or terminals of the grammar) 
and proceeds towards root (start symbol)
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