
Lexical Analysis 
• Recognize tokens and ignore white spaces, 

comments 

 

 

  

 

• Error reporting 

 

• Model using regular expressions 

 

• Recognize using Finite State Automata 
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Generates token stream 



Lexical Analysis 
• Sentences consist of string of tokens (a 

syntactic category) 
 For example, number, identifier, keyword, 

string 

• Sequences of characters in a token is a 
lexeme  

 for example, 100.01, counter, const, 
“How are you?” 

• Rule of description is a pattern  
 for example, letter ( letter | digit )* 

• Task: Identify Tokens and corresponding 
Lexemes 
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Lexical Analysis 
• Examples 
• Construct constants: for example, convert a 

number to token num and pass the value as its 
attribute,  
– 31 becomes <num, 31> 

• Recognize keyword and identifiers  
– counter = counter + increment 

becomes id = id + id   
– check that id here is not a keyword 

• Discard whatever does not contribute to 
parsing  
– white spaces (blanks, tabs, newlines) and 

comments 
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Interface to other phases 

• Why do we need Push back? 
• Required due to look-ahead  
 for example,  to recognize  >= and > 

• Typically implemented through a buffer  
– Keep input in a buffer 
– Move pointers over the input 
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Approaches to implementation 
 

• Use assembly language 
 Most efficient but most difficult to implement 
 
• Use high level languages like C  
 Efficient but difficult to implement 
 
• Use tools like lex, flex 
 Easy to implement but not as efficient as the first 

two cases 
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Symbol Table 

• Stores information for subsequent 
phases 

 
• Interface to the symbol table 

– Insert(s,t): save lexeme s and token t 
and return pointer 

– Lookup(s): return index of entry for 
lexeme s or 0 if s is not found 
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Implementation of Symbol Table 

• Fixed amount of space to store 
lexemes.  
– Not advisable as it waste space. 

 
• Store lexemes in a separate array.  

– Each lexeme is separated by eos.  
– Symbol table has pointers to 

lexemes. 
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Fixed space for lexemes Other attributes 

Usually 32 bytes 

lexeme1 lexeme2 eos eos lexeme3 …… 

Other attributes Usually 4 bytes 
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How to handle keywords? 

• Consider token DIV and MOD with lexemes 
div and mod. 

• Initialize symbol table with insert( “div” , 
DIV ) and insert( “mod” , MOD). 

• Any subsequent insert fails (unguarded 
insert) 

• Any subsequent lookup returns the 
keyword value, therefore, these cannot be 

used as an identifier. 
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Difficulties in the design of lexical 
analyzers 
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Is it as simple as it sounds? 



Lexical analyzer: Challenges 

• Lexemes in a fixed position. Fixed format vs. 
free format languages 

• FORTRAN Fixed Format 
– 80 columns per line 

– Column 1-5 for the statement number/label column  

– Column 6 for continuation mark (?)  

– Column 7-72 for the program statements 

– Column 73-80 Ignored (Used for other purpose) 

– Letter C in Column 1 meant the current line is a 
comment 
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Lexical analyzer: Challenges 

• Handling of blanks 
– in C, blanks separate identifiers 

– in FORTRAN, blanks are important only in 
literal strings  

– variable counter is same as count er 

– Another example 

 DO 10  I = 1.25   

 DO 10  I = 1,25   
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DO10I=1.25 

DO10I=1,25 



• The first line is a variable assignment 

 DO10I=1.25  

 

• The second line is beginning of a  

 Do loop 

 

• Reading from left to right one can not 
distinguish between the two until the “;” or 
“.” is reached 
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Fortran white space and fixed format rules came 
into force due to punch cards and errors in 
punching 
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Fortran white space and fixed format rules came 
into force due to punch cards and errors in 
punching 



PL/1 Problems 
• Keywords are not reserved in PL/1  

   if then then then = else else else = then 

 if if then then = then + 1 

• PL/1 declarations 

     Declare(arg1,arg2,arg3,…….,argn) 

• Cannot tell whether Declare is a keyword 
or array reference until after “)” 

• Requires arbitrary lookahead and very large 
buffers.  
– Worse, the buffers may have to be reloaded. 

19 



Problem continues even today!! 

• C++ template syntax: Foo<Bar> 

• C++ stream syntax: cin >> var; 

• Nested templates: 
 Foo<Bar<Bazz>> 

• Can these problems be resolved by 
lexical analyzers alone? 
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How to specify tokens? 

• How to describe tokens 

 2.e0 20.e-01 2.000 

• How to break text into token 

 if (x==0) a = x << 1; 

 if (x==0) a = x < 1; 

• How to break input into tokens efficiently 
– Tokens may have similar prefixes 

– Each character should be looked at only once 
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How to describe tokens? 

• Programming language tokens can be 
described by regular languages 

• Regular languages 

– Are easy to understand 

– There is a well understood and useful theory 

– They have efficient implementation 

• Regular languages have been discussed in 
great detail in the “Theory of Computation” 
course 
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How to specify tokens 

• Regular definitions 
– Let ri be a regular expression and di be a 

distinct name 
– Regular definition is a sequence of 

definitions of the form 
 d1  r1 

 d2  r2 

 ….. 
 dn  rn 

– Where each ri is a regular expression 
over Σ U {d1, d2, …, di-1} 

29 



Examples 

• My fax number 
 91-(512)-259-7586 
• Σ = digit U {-, (, ) } 
• Country  digit+    

• Area  ‘(‘ digit+ ‘)’    
• Exchange  digit+   

• Phone  digit+    

• Number  country ‘-’ area ‘-’ 
exchange ‘-’ phone 
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digit2 

digit3 

digit3 

digit4 



Examples … 

• My email address 

 karkare@iitk.ac.in 

• Σ = letter U {@, . } 

• letter  a| b| …| z| A| B| …| Z 

• name  letter+ 

• address  name ‘@’ name ‘.’ 
name ‘.’ name 
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Examples … 
• Identifier 

 letter  a| b| …|z| A| B| …| Z 

 digit  0| 1| …| 9 

 identifier  letter(letter|digit)* 

 

• Unsigned number in C 

 digit  0| 1| …|9 

 digits  digit+ 

 fraction  ’.’ digits | є 

 exponent  (E ( ‘+’ | ‘-’ | є) digits) | є 

 number  digits fraction exponent 
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Regular expressions in specifications 

• Regular expressions describe many useful languages 
 
• Regular expressions are only specifications; 

implementation is still required 
 
• Given a string s and a regular expression R,  
 does s Є L(R) ? 
 
• Solution to this problem is the basis of the lexical 

analyzers 
 
• However, just the yes/no answer is not sufficient 
 
• Goal: Partition the input into tokens 
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1. Write a regular expression for lexemes of 
each token 

• number  digit+ 

• identifier  letter(letter|digit)+ 

2. Construct R matching all lexemes of all tokens 
• R = R1 + R2 + R3 + ….. 

3. Let input be x1…xn  
• for 1 ≤ i ≤ n check x1…xi Є L(R) 

4. x1…xi Є L(R)  x1…xi Є L(Rj) for some j 
• smallest such j is token class of x1…xi 

5. Remove x1…xi from input; go to (3) 
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• The algorithm gives priority to tokens listed 
earlier 
– Treats “if” as keyword and not identifier 

• How much input is used? What if 
– x1…xi Є L(R)  
– x1…xj Є L(R)  
– Pick up the longest possible string in L(R) 
– The principle of “maximal munch” 

• Regular expressions provide a concise and 
useful notation for string patterns 

• Good algorithms require a single pass over 
the input 
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How to break up text 
 

• Elsex=0   
 

• Regular expressions alone are not enough 
 

• Normally the longest match wins 
 

• Ties are resolved by prioritizing tokens 
 

• Lexical definitions consist of regular definitions, 
priority rules and maximal munch principle 
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else x = 0 elsex = 0 



Transition Diagrams 
• Regular expression are declarative specifications 
• Transition diagram is an implementation 
• A transition diagram consists of 

– An input alphabet belonging to Σ 
– A set of states S 
– A set of transitions statei →

𝑖𝑛𝑝𝑢𝑡 statej 

– A set of final states F  
– A start state n 

• Transition s1 →𝑎 s2 is read: 
 in state s1 on input 𝑎 go to state s2 
• If end of input is reached in a final state then accept 
• Otherwise, reject 
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Pictorial notation 
• A state 

 

• A final state 

 

• Transition 

 

• Transition from state i to state j on an 
input a 
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i j 
a 



How to recognize tokens 

• Consider 

relop  < | <= | = | <> | >= | > 

id  letter(letter|digit)* 

num  digit+ (‘.’ digit+)? (E(‘+’|’-’)? digit+)? 

delim  blank | tab | newline 

ws  delim+ 

 

• Construct an analyzer that will return 
<token, attribute> pairs 
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Transition diagram for relops 

> = 

other 

     token is relop, lexeme is >= 

     token is relop, lexeme is > 
* 

< 

> 

> 

= 
= 

= 

other 

other 

* 

* 

     token is relop, lexeme is >= 

     token is relop, lexeme is > 

     token is relop, lexeme is < 

     token is relop, lexeme is <> 

     token is relop, lexeme is <= 

     token is relop, lexeme is = 
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Transition diagram for identifier 
letter 

digit 

other 

delim 

letter 

other delim 

* 

* 

Transition diagram for white spaces 
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digit 

digit 

digit 

others * 

Transition diagram for unsigned numbers 

digit 

digit 

digit 

others * . 

digit 

digit 

digit 

digit 

digit 

digit 

digit . 

E 

E others * + 
- 

Integer number 

Real numbers 
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• The lexeme for a given token must be the longest possible 
 
• Assume input to be 12.34E56 
 
• Starting in the third diagram the accept state will be 

reached after 12 
 
• Therefore, the matching should always start with the first 

transition diagram 
 
• If failure occurs in one transition diagram then retract the 

forward pointer to the start state and activate the next 
diagram 

 
• If failure occurs in all diagrams then a lexical error has 

occurred 
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Implementation of transition 
diagrams  

Token nexttoken() { 
 while(1) { 
  switch (state) { 
   …… 
   case 10: c=nextchar(); 
     if(isletter(c)) state=10; 
     elseif (isdigit(c)) state=10; 
     else state=11; 
     break; 
   …… 
   } 
  } 
} 
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Another transition diagram for unsigned numbers 

digit digit digit 

  
digit digit 

digit 

digit . 

E 

E others * + 
- 

others 

others 

A more complex transition diagram 
is difficult to implement and  

may give rise to errors during coding, however,  
there are ways to better implementation 
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Lexical analyzer generator 

• Input to the generator 
– List of regular expressions in priority order 

– Associated actions for each of regular expression 
(generates kind of token and other book keeping 
information) 

 

• Output of the generator 
– Program that reads input character stream and breaks 

that into tokens 

– Reports lexical errors (unexpected characters), if any 
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LEX: A lexical analyzer generator 
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LEX C  
Compiler 

Lexical 
analyzer 

Token 
specifications 

lex.yy.c 
C code for 

Lexical  
analyzer 

Object code 

Input 
program 

tokens 

Refer to LEX User’s Manual 



How does LEX work? 

• Regular expressions describe the languages that can be 
recognized by finite automata 

 

• Translate each token regular expression into a non 
deterministic finite automaton (NFA) 

 

• Convert the NFA into an equivalent DFA 

 

• Minimize the DFA to reduce number of states 

 

• Emit code driven by the DFA tables 
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