
Lexical Analysis
• Recognize tokens and ignore white spaces,

comments

• Error reporting

• Model using regular expressions

• Recognize using Finite State Automata
1

Generates token stream

Lexical Analysis
• Sentences consist of string of tokens (a

syntactic category)
 For example, number, identifier, keyword,

string

• Sequences of characters in a token is a
lexeme

 for example, 100.01, counter, const,
“How are you?”

• Rule of description is a pattern
 for example, letter (letter | digit)*

• Task: Identify Tokens and corresponding
Lexemes

 2

Lexical Analysis
• Examples
• Construct constants: for example, convert a

number to token num and pass the value as its
attribute,
– 31 becomes <num, 31>

• Recognize keyword and identifiers
– counter = counter + increment

becomes id = id + id
– check that id here is not a keyword

• Discard whatever does not contribute to
parsing
– white spaces (blanks, tabs, newlines) and

comments
3

Interface to other phases

• Why do we need Push back?
• Required due to look-ahead
 for example, to recognize >= and >

• Typically implemented through a buffer
– Keep input in a buffer
– Move pointers over the input

4

Lexical
Analyzer

Syntax
Analyzer

Input

Ask for
token

Token
Read

characters

Push back
Extra

characters

Approaches to implementation

• Use assembly language
 Most efficient but most difficult to implement

• Use high level languages like C
 Efficient but difficult to implement

• Use tools like lex, flex
 Easy to implement but not as efficient as the first

two cases

5

Symbol Table

• Stores information for subsequent
phases

• Interface to the symbol table

– Insert(s,t): save lexeme s and token t
and return pointer

– Lookup(s): return index of entry for
lexeme s or 0 if s is not found

9

Implementation of Symbol Table

• Fixed amount of space to store
lexemes.
– Not advisable as it waste space.

• Store lexemes in a separate array.

– Each lexeme is separated by eos.
– Symbol table has pointers to

lexemes.

10

Fixed space for lexemes Other attributes

Usually 32 bytes

lexeme1 lexeme2 eos eos lexeme3 ……

Other attributes Usually 4 bytes

11

How to handle keywords?

• Consider token DIV and MOD with lexemes
div and mod.

• Initialize symbol table with insert(“div” ,
DIV) and insert(“mod” , MOD).

• Any subsequent insert fails (unguarded
insert)

• Any subsequent lookup returns the
keyword value, therefore, these cannot be

used as an identifier.

12

Difficulties in the design of lexical
analyzers

13

Is it as simple as it sounds?

Lexical analyzer: Challenges

• Lexemes in a fixed position. Fixed format vs.
free format languages

• FORTRAN Fixed Format
– 80 columns per line

– Column 1-5 for the statement number/label column

– Column 6 for continuation mark (?)

– Column 7-72 for the program statements

– Column 73-80 Ignored (Used for other purpose)

– Letter C in Column 1 meant the current line is a
comment

14

Lexical analyzer: Challenges

• Handling of blanks
– in C, blanks separate identifiers

– in FORTRAN, blanks are important only in
literal strings

– variable counter is same as count er

– Another example

 DO 10 I = 1.25

 DO 10 I = 1,25

15

DO10I=1.25

DO10I=1,25

• The first line is a variable assignment

 DO10I=1.25

• The second line is beginning of a

 Do loop

• Reading from left to right one can not
distinguish between the two until the “;” or
“.” is reached

16

17

Fortran white space and fixed format rules came
into force due to punch cards and errors in
punching

18

Fortran white space and fixed format rules came
into force due to punch cards and errors in
punching

PL/1 Problems
• Keywords are not reserved in PL/1

 if then then then = else else else = then

 if if then then = then + 1

• PL/1 declarations

 Declare(arg1,arg2,arg3,…….,argn)

• Cannot tell whether Declare is a keyword
or array reference until after “)”

• Requires arbitrary lookahead and very large
buffers.
– Worse, the buffers may have to be reloaded.

19

Problem continues even today!!

• C++ template syntax: Foo<Bar>

• C++ stream syntax: cin >> var;

• Nested templates:
 Foo<Bar<Bazz>>

• Can these problems be resolved by
lexical analyzers alone?

20

How to specify tokens?

• How to describe tokens

 2.e0 20.e-01 2.000

• How to break text into token

 if (x==0) a = x << 1;

 if (x==0) a = x < 1;

• How to break input into tokens efficiently
– Tokens may have similar prefixes

– Each character should be looked at only once

21

How to describe tokens?

• Programming language tokens can be
described by regular languages

• Regular languages

– Are easy to understand

– There is a well understood and useful theory

– They have efficient implementation

• Regular languages have been discussed in
great detail in the “Theory of Computation”
course

22

How to specify tokens

• Regular definitions
– Let ri be a regular expression and di be a

distinct name
– Regular definition is a sequence of

definitions of the form
 d1  r1

 d2  r2

 …..
 dn  rn

– Where each ri is a regular expression
over Σ U {d1, d2, …, di-1}

29

Examples

• My fax number
 91-(512)-259-7586
• Σ = digit U {-, (,) }
• Country  digit+

• Area  ‘(‘ digit+ ‘)’
• Exchange  digit+

• Phone  digit+

• Number  country ‘-’ area ‘-’
exchange ‘-’ phone

30

digit2

digit3

digit3

digit4

Examples …

• My email address

 karkare@iitk.ac.in

• Σ = letter U {@, . }

• letter  a| b| …| z| A| B| …| Z

• name  letter+

• address  name ‘@’ name ‘.’
name ‘.’ name

31

Examples …
• Identifier

 letter  a| b| …|z| A| B| …| Z

 digit  0| 1| …| 9

 identifier  letter(letter|digit)*

• Unsigned number in C

 digit  0| 1| …|9

 digits  digit+

 fraction  ’.’ digits | є

 exponent  (E (‘+’ | ‘-’ | є) digits) | є

 number  digits fraction exponent

32

Regular expressions in specifications

• Regular expressions describe many useful languages

• Regular expressions are only specifications;

implementation is still required

• Given a string s and a regular expression R,
 does s Є L(R) ?

• Solution to this problem is the basis of the lexical

analyzers

• However, just the yes/no answer is not sufficient

• Goal: Partition the input into tokens

33

1. Write a regular expression for lexemes of
each token

• number  digit+

• identifier  letter(letter|digit)+

2. Construct R matching all lexemes of all tokens
• R = R1 + R2 + R3 + …..

3. Let input be x1…xn
• for 1 ≤ i ≤ n check x1…xi Є L(R)

4. x1…xi Є L(R)  x1…xi Є L(Rj) for some j
• smallest such j is token class of x1…xi

5. Remove x1…xi from input; go to (3)

34

• The algorithm gives priority to tokens listed
earlier
– Treats “if” as keyword and not identifier

• How much input is used? What if
– x1…xi Є L(R)
– x1…xj Є L(R)
– Pick up the longest possible string in L(R)
– The principle of “maximal munch”

• Regular expressions provide a concise and
useful notation for string patterns

• Good algorithms require a single pass over
the input

35

How to break up text

• Elsex=0

• Regular expressions alone are not enough

• Normally the longest match wins

• Ties are resolved by prioritizing tokens

• Lexical definitions consist of regular definitions,
priority rules and maximal munch principle

36

else x = 0 elsex = 0

Transition Diagrams
• Regular expression are declarative specifications
• Transition diagram is an implementation
• A transition diagram consists of

– An input alphabet belonging to Σ
– A set of states S
– A set of transitions statei →

𝑖𝑛𝑝𝑢𝑡 statej

– A set of final states F
– A start state n

• Transition s1 →𝑎 s2 is read:
 in state s1 on input 𝑎 go to state s2
• If end of input is reached in a final state then accept
• Otherwise, reject

37

Pictorial notation
• A state

• A final state

• Transition

• Transition from state i to state j on an
input a

38

i j
a

How to recognize tokens

• Consider

relop  < | <= | = | <> | >= | >

id  letter(letter|digit)*

num  digit+ (‘.’ digit+)? (E(‘+’|’-’)? digit+)?

delim  blank | tab | newline

ws  delim+

• Construct an analyzer that will return
<token, attribute> pairs

39

Transition diagram for relops

> =

other

 token is relop, lexeme is >=

 token is relop, lexeme is >
*

<

>

>

=
=

=

other

other

*

*

 token is relop, lexeme is >=

 token is relop, lexeme is >

 token is relop, lexeme is <

 token is relop, lexeme is <>

 token is relop, lexeme is <=

 token is relop, lexeme is =

40

Transition diagram for identifier
letter

digit

other

delim

letter

other delim

*

*

Transition diagram for white spaces

41

digit

digit

digit

others *

Transition diagram for unsigned numbers

digit

digit

digit

others * .

digit

digit

digit

digit

digit

digit

digit .

E

E others * +
-

Integer number

Real numbers

42

• The lexeme for a given token must be the longest possible

• Assume input to be 12.34E56

• Starting in the third diagram the accept state will be

reached after 12

• Therefore, the matching should always start with the first

transition diagram

• If failure occurs in one transition diagram then retract the

forward pointer to the start state and activate the next
diagram

• If failure occurs in all diagrams then a lexical error has

occurred

43

Implementation of transition
diagrams

Token nexttoken() {
 while(1) {
 switch (state) {
 ……
 case 10: c=nextchar();
 if(isletter(c)) state=10;
 elseif (isdigit(c)) state=10;
 else state=11;
 break;
 ……
 }
 }
}

44

Another transition diagram for unsigned numbers

digit digit digit

digit digit

digit

digit .

E

E others * +
-

others

others

A more complex transition diagram
is difficult to implement and

may give rise to errors during coding, however,
there are ways to better implementation

45

Lexical analyzer generator

• Input to the generator
– List of regular expressions in priority order

– Associated actions for each of regular expression
(generates kind of token and other book keeping
information)

• Output of the generator
– Program that reads input character stream and breaks

that into tokens

– Reports lexical errors (unexpected characters), if any

46

LEX: A lexical analyzer generator

47

LEX C
Compiler

Lexical
analyzer

Token
specifications

lex.yy.c
C code for

Lexical
analyzer

Object code

Input
program

tokens

Refer to LEX User’s Manual

How does LEX work?

• Regular expressions describe the languages that can be
recognized by finite automata

• Translate each token regular expression into a non
deterministic finite automaton (NFA)

• Convert the NFA into an equivalent DFA

• Minimize the DFA to reduce number of states

• Emit code driven by the DFA tables

48

