
What are Compilers? 
• Translates from one representation of the program to 

another 
 
• Typically from high level source code to low level 

machine code or object code 
 
• Source code is normally optimized for human readability 

– Expressive: matches our notion of languages (and 
application?!) 

– Redundant to help avoid programming errors 
 

• Machine code is optimized for hardware 
– Redundancy is reduced 
– Information about the intent is lost 

1 



2 

Compiler as a Translator 

Compiler High level 
program 

Low level 
code 



Goals of translation 
• Good compile time performance 
• Good performance for the 

generated code 
• Correctness  

–  A very important issue.  
–Can compilers be proven to be 

correct?  
• Tedious even for toy compilers! 

Undecidable in general. 
–However, the correctness has an 

implication on the development cost 

3 



How to translate? 
• Direct translation is difficult. Why? 

 
• Source code and machine code mismatch in 

level of abstraction 
– Variables vs Memory locations/registers 
– Functions vs jump/return 
– Parameter passing 
– structs 

• Some languages are farther from machine 
code than others 
– For example, languages supporting Object 

Oriented Paradigm 

 4 



How to translate easily? 

• Translate in steps. Each step handles a 
reasonably simple, logical, and well defined 
task 

• Design a series of program representations 

• Intermediate representations should be 
amenable to program manipulation of 
various kinds (type checking, optimization, 
code generation etc.) 

• Representations become more machine 
specific and less language specific as the 
translation proceeds 

5 



The first few steps 
• The first few steps can be understood 

by analogies to how humans 
comprehend a natural language 

• The first step is recognizing/knowing 
alphabets of a language. For example 
– English text consists of lower and upper 

case alphabets, digits, punctuations and 
white spaces 

– Written programs consist of characters 
from the ASCII characters set (normally 
9-13, 32-126) 

6 



The first few steps 
• The next step to understand the sentence 

is recognizing words 
– How to recognize English words? 

– Words found in standard dictionaries 

– Dictionaries are updated regularly 

 

 

7 



The first few steps 
• How to recognize words in a 

programming language? 
– a dictionary (of keywords etc.)  

– rules for constructing words (identifiers, 
numbers etc.) 

• This is called lexical analysis 

• Recognizing words is not completely 
trivial. For example: 
     w hat ist his se nte nce? 

 

 8 



Lexical Analysis: Challenges 
• We must know what the word 

separators are 
 

• The language must define rules for 
breaking a sentence into a sequence of 
words. 
 

• Normally white spaces and 
punctuations are word separators in 
languages.  

9 



Lexical Analysis: Challenges 
• In programming languages a character 

from a different class may also be 
treated as word separator. 
 

• The lexical analyzer breaks a sentence 
into a sequence of words or tokens: 
– If a == b then a = 1 ; else a = 2 ; 

– Sequence of words (total 14 words) 
 if   a  ==  b  then   a  =  1  ;  else  a  =  

2  ; 

10 



The next step 
• Once the words are understood, the next 

step is to understand the structure of the 
sentence 
 

• The process is known as syntax checking or 
parsing 

                    I           am          going          to            play 
 
 
             pronoun     aux          verb                         adverb 
 
 
             subject               verb                        adverb-phrase 
 
 
                                            Sentence  

11 



Parsing 
• Parsing a program is exactly the same 

process  as shown in previous slide. 
• Consider an expression 
 if x == y then z = 1 else z = 2  
       

      if stmt 
 

      predicate         then-stmt          else-stmt 
 
 

                                 = =                         =                          = 
 
 

                            x            y            z             1             z           2   

12 



Understanding the meaning 

• Once the sentence structure is 
understood we try to understand the 
meaning of the sentence (semantic 
analysis) 

• A challenging task  
• Example: 

 Prateek said Nitin left his assignment at 
home 

• What does his refer to? Prateek or Nitin? 

13 



Understanding the meaning 

• Worse case 

Amit said Amit left his assignment at 
home 

• Even worse 

Amit said Amit left Amit’s assignment 
at home 

• How many Amits are there? Which 
one left the assignment? Whose 
assignment got left? 

14 



Semantic Analysis 

• Too hard for compilers. They do not have 
capabilities similar to human understanding 

• However, compilers do perform analysis to 
understand the meaning and catch 
inconsistencies 

• Programming languages define strict rules to 
avoid such ambiguities 

 { int Amit = 3; 

  { int Amit = 4; 

     cout << Amit; 

  } 

 } 

15 



More on Semantic Analysis 

• Compilers perform many other checks 
besides variable bindings 

• Type checking 

 Amit left her work at home 

• There is a type mismatch between her 
and Amit. Presumably Amit is a male. 
And they are not the same person. 

16 



अश्वथामा हत: इतत   नरो वा कुञ्जरो वा 

“Ashwathama hathaha iti,  

  narova kunjarova” 

 
Ashwathama is dead. But, I am not certain 

whether it was a human or an elephant 

Example from Mahabharat 



Compiler structure once again 

18 

Compiler 

Front End 

Lexical  
Analysis 

Syntax  
Analysis 

Semantic 
Analysis 

(Language specific) 

Token 
stream 

Abstract 
Syntax 
tree 

Unambiguous 
Program 
representation 

Source 
Program 

Target 
Program 

Back End 





Code Optimization 

• No strong counter part with 
English, but is similar to 
editing/précis writing 

 
• Automatically modify programs so 

that they  
–Run faster 
–Use less resources (memory, 

registers, space, fewer fetches etc.) 
 

23 



Code Optimization 

• Some common optimizations 
–Common sub-expression elimination 
–Copy propagation 
–Dead code elimination 
–Code motion 
–Strength reduction 
–Constant folding 
 

• Example: x = 15 * 3 is transformed 
to x = 45 

24 



Example of Optimizations 
A : assignment   M : multiplication   D : division    E : exponent  

 
 PI = 3.14159 
 Area = 4 * PI * R^2 
 Volume = (4/3) * PI * R^3   3A+4M+1D+2E 
-------------------------------- 
 X = 3.14159 * R * R   
 Area = 4 * X 
 Volume = 1.33 * X * R   3A+5M 
-------------------------------- 
 Area = 4 * 3.14159 * R * R  
 Volume = ( Area / 3 ) * R   2A+4M+1D 
-------------------------------- 
 Area = 12.56636 * R * R   
 Volume = ( Area /3 ) * R   2A+3M+1D 
-------------------------------- 
 X = R * R    
 Area = 12.56636 * X 
 Volume = 4.18879 * X * R   3A+4M 

25 



Code Generation 

• Usually a two step process 
– Generate intermediate code from the 

semantic representation of the program 
– Generate machine code from the 

intermediate code 

 
• The advantage is that each phase is 

simple 
 
• Requires design of intermediate 

language 
 26 



Code Generation 

• Most compilers perform translation 
between successive intermediate 
representations 

 
• Intermediate languages are generally 

ordered in decreasing level of abstraction 
from highest (source) to lowest (machine) 

 

27 



Code Generation 
• Abstractions at the source level 
 identifiers, operators, expressions, statements, 

conditionals, iteration, functions (user defined, 
system defined or libraries) 

 
• Abstraction at the target level 
 memory locations, registers, stack, opcodes, 

addressing modes, system libraries, interface to 
the operating systems 

 
• Code generation is mapping from source level 

abstractions to target machine abstractions 
28 



Code Generation 
• Map identifiers to locations 

(memory/storage allocation) 
• Explicate variable accesses (change 

identifier reference to 
relocatable/absolute address 

• Map source operators to opcodes 
or a sequence of opcodes 

29 



Code Generation 

• Convert conditionals and iterations to a 
test/jump or compare instructions 

• Layout parameter passing protocols: 
locations for parameters, return values, 
layout of activations frame etc. 

• Interface calls to library, runtime system, 
operating systems 

30 



Post translation Optimizations 

• Algebraic transformations and 
reordering 
– Remove/simplify operations like 

• Multiplication by 1 
• Multiplication by 0 
• Addition with 0 
 

– Reorder instructions based on 
• Commutative properties of operators 
• For example x+y is same as y+x  (always?) 

31 



Post translation Optimizations 

Instruction selection 
– Addressing mode selection 
– Opcode selection 
– Peephole optimization 

32 



33 

if

== =

b 0 a b

boolean

int

int

int

int int

;

Intermediate code generation 

O
p

tim
izatio

n
 

Code Generation 

CMP Cx, 0 
CMOVZ  Dx,Cx 



Compiler structure 

34 

Compiler 

Front End 

Lexical  
Analysis 

Syntax  
Analysis 

Semantic 
Analysis 

(Language specific) 

Token 
stream 

Abstract 
Syntax 
tree 

Unambiguous 
Program 
representation 

Source 
Program 

Target 
Program 

Optimizer 

Optimized 
     code 

Optional 
Phase 

IL code 
generator 

IL  
code 

Code 
generator 

Back End 
Machine specific 



Something is missing 

• Information required about the program variables during 
compilation 
– Class of variable: keyword, identifier etc. 

– Type of variable: integer, float, array, function etc. 

– Amount of storage required 

– Address in the memory 

– Scope information  

• Location to store this information 
– Attributes with the variable (has obvious problems) 

– At a central repository and every phase refers to the repository 
whenever information is required 

• Normally the second approach is preferred 
– Use a data structure called symbol table 

35 



Final Compiler structure 

36 

Compiler 

Front End 

Lexical  
Analysis 

Syntax  
Analysis 

Semantic 
Analysis 

(Language specific) 

Token 
stream 

Abstract 
Syntax 
tree 

Unambiguous 
Program 
representation 

Source 
Program 

Target 
Program 

Optimizer 

Optimized 
     code 

Optional 
Phase 

IL code 
generator 

IL  
code 

Code 
generator 

Back End 
Machine specific 

Symbol Table 



Advantages of the model 

• Also known as Analysis-Synthesis model of 
compilation 
– Front end phases are known as analysis phases 
– Back end phases are known as synthesis phases 
 

• Each phase has a well defined work 
 
• Each phase handles a logical activity in the 

process of compilation 
 

37 



Advantages of the model … 

• Compiler is re-targetable 

 

• Source and machine independent code optimization 
is possible.  

 

• Optimization phase can be inserted after the front 
and back end phases have been developed and 
deployed 

 

38 



Issues in Compiler Design 
• Compilation appears to be very simple, but there are 

many pitfalls 
 
• How are erroneous programs handled? 
 
• Design of programming languages has a big impact on the 

complexity of the compiler 
 
• M*N vs. M+N problem 

– Compilers are required for all the languages and all the machines 
– For M languages and N machines we need to develop M*N 

compilers 
– However, there is lot of repetition of work because of similar 

activities in the front ends and back ends 
– Can we design only M front ends and N back ends, and some how 

link them to get all M*N compilers? 

39 



M*N vs M+N Problem 

40 

F1 

F2 

F3 

FM 

B1 

B2 

B3 

BN 

Requires M*N compilers 

F1 

F2 

F3 

FM 

B1 

B2 

B3 

BN 

 Intermediate Language 

IL 

Requires M front ends 
And N back ends 



Universal Intermediate Language 

• Impossible to design a single intermediate 
language to accommodate all programming 
languages  
– Mythical universal intermediate language sought since 

mid 1950s (Aho, Sethi, Ullman) 

• However, common IRs for similar languages, and 
similar machines have been designed, and are 
used for compiler development 

41 



How do we know compilers generate 
correct code? 

• Prove that the compiler is correct.  
 
• However, program proving techniques do 

not exist at a level where large and complex 
programs like compilers can be proven to 
be correct 

 
• In practice do a systematic testing to 

increase confidence level 

42 



• Regression testing 
– Maintain a suite of test programs 
– Expected behavior of each program is 

documented 
– All the test programs are compiled using the 

compiler and deviations are reported to the 
compiler writer 

 

• Design of test suite 
– Test programs should exercise every statement 

of the compiler at least once 
– Usually requires great ingenuity to design such 

a test suite 
– Exhaustive test suites have been constructed 

for some languages 
43 



How to reduce development and testing 
effort? 

• DO NOT WRITE COMPILERS 
 

• GENERATE compilers  
 

• A compiler generator should be able to “generate” 
compiler from the source language and target machine 
specifications 
 

44 

Compiler Compiler 
Generator 

Source Language 
Specification 

Target Machine 
Specification 



Tool based Compiler Development 

45 

Lexical  
Analyzer 

Parser Semantic 
Analyzer Optimizer 

IL code 
generator 

Code 
generator 

Source 
Program 

Target 
Program 

Lexical 
A

n
alyzer  

G
en

erato
r 

Lexeme 
specs 

Parser  
G

en
erato

r 

Parser 
specs 

Other phase 
Generators 

Phase 
Specifications 

C
o

d
e 

G
en

erato
r 

gen
erato

r 

Machine 
specifications 



Bootstrapping  
• Compiler is a complex program and should not be 

written in assembly language 
• How to write compiler for a language in the same 

language (first time!)? 
• First time this experiment was done for Lisp 
• Initially, Lisp was used as a notation for writing 

functions.  
• Functions were then hand translated into 

assembly language and executed 
• McCarthy wrote a function eval[e] in Lisp that 

took a Lisp expression e as an argument 
• The function was later hand translated and it 

became an interpreter for Lisp 

46 



Bootstrap 

Image By: No machine-readable author provided. Tarquin~commonswiki assumed 

(based on copyright claims). - No machine-readable source provided. Own work 

assumed (based on copyright claims)., CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=105468 



Bootstrapping: Example  

• Lets solve a simpler problem first 
• Existing architecture and C 

compiler: 
–gcc-x86 compiles C language to x86 

• New architecture: 
–x335  

• How to develop cc-x335? 
– runs on x335, generates code for x335 

 

48 



Bootstrapping: Example  

• How to develop cc-x335? 
• Write a C compiler in C that 

emits x335 code 
• Compile using gcc-x86 on x86 

machine 
• We have a C compiler that 

emits x335 code 
–But runs on x86, not x355  

49 



Bootstrapping: Example  

• We have cc-x86-x335 
• Compiler runs on x86, generated code runs 

on x355 

• Compile the source code of C compiler 
with cc-x86-x335  

• There it is  
• the output is a binary that runs on x335 

• this binary is the desired  compiler :      
cc-x335 
 



Bootstrapping … 

• A compiler can be characterized by three languages: the 
source language (S), the target language (T), and the 
implementation language (I) 

 

• The three language S, I, and T can be quite different. Such 
a compiler is called cross-compiler 

 

• This is represented by a T-diagram as: 

 

 

 

• In textual form this can be represented as 

                   SIT 

 51 

S T 

I 



• Write a cross compiler for a language L in 
implementation language S to generate code for 
machine N 

• Existing compiler for S runs on a different 
machine M and generates code for M 

• When Compiler LSN is run through SMM we get 
compiler LMN 

 

52 

S 

M 

M 

L 

S 

N L 

M 

N 

C PDP11 

PDP11 

EQN TROFF 

C 

EQN TROFF 

PDP11 



Bootstrapping a Compiler 
• Suppose LNN is to be developed on a machine M where 

LMM is available 

 

 

 

 

• Compile LLN second time using the generated compiler 

53 

L 

M 

M 

L 

L 

N L 

M 

N 

L 

L 

N 

L 

M 

N 

L 

N 

N 



54 

L N 

L L 

L 

L L 

L N 

M 

M M 

N N 

N 

Bootstrapping a Compiler:  
the Complete picture 



Compilers of the 21st Century 

• Overall structure of almost all the compilers is similar to 
the structure we have discussed 

 
• The proportions of the effort have changed since the early 

days of compilation 
 
• Earlier front end phases were the most complex and 

expensive parts. 
 
• Today back end phases and optimization dominate all 

other phases. Front end phases are typically a smaller 
fraction of the total time 

55 


