
What are Compilers? 
• Translates from one representation of the program to 

another 
 
• Typically from high level source code to low level 

machine code or object code 
 
• Source code is normally optimized for human readability 

– Expressive: matches our notion of languages (and 
application?!) 

– Redundant to help avoid programming errors 
 

• Machine code is optimized for hardware 
– Redundancy is reduced 
– Information about the intent is lost 
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Goals of translation 
• Good compile time performance 
• Good performance for the 

generated code 
• Correctness  

–  A very important issue.  
–Can compilers be proven to be 

correct?  
• Tedious even for toy compilers! 

Undecidable in general. 
–However, the correctness has an 

implication on the development cost 
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How to translate? 
• Direct translation is difficult. Why? 

 
• Source code and machine code mismatch in 

level of abstraction 
– Variables vs Memory locations/registers 
– Functions vs jump/return 
– Parameter passing 
– structs 

• Some languages are farther from machine 
code than others 
– For example, languages supporting Object 

Oriented Paradigm 
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How to translate easily? 

• Translate in steps. Each step handles a 
reasonably simple, logical, and well defined 
task 

• Design a series of program representations 

• Intermediate representations should be 
amenable to program manipulation of 
various kinds (type checking, optimization, 
code generation etc.) 

• Representations become more machine 
specific and less language specific as the 
translation proceeds 
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The first few steps 
• The first few steps can be understood 

by analogies to how humans 
comprehend a natural language 

• The first step is recognizing/knowing 
alphabets of a language. For example 
– English text consists of lower and upper 

case alphabets, digits, punctuations and 
white spaces 

– Written programs consist of characters 
from the ASCII characters set (normally 
9-13, 32-126) 
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The first few steps 
• The next step to understand the sentence 

is recognizing words 
– How to recognize English words? 

– Words found in standard dictionaries 

– Dictionaries are updated regularly 
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The first few steps 
• How to recognize words in a 

programming language? 
– a dictionary (of keywords etc.)  

– rules for constructing words (identifiers, 
numbers etc.) 

• This is called lexical analysis 

• Recognizing words is not completely 
trivial. For example: 
     w hat ist his se nte nce? 
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Lexical Analysis: Challenges 
• We must know what the word 

separators are 
 

• The language must define rules for 
breaking a sentence into a sequence of 
words. 
 

• Normally white spaces and 
punctuations are word separators in 
languages.  
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Lexical Analysis: Challenges 
• In programming languages a character 

from a different class may also be 
treated as word separator. 
 

• The lexical analyzer breaks a sentence 
into a sequence of words or tokens: 
– If a == b then a = 1 ; else a = 2 ; 

– Sequence of words (total 14 words) 
 if   a  ==  b  then   a  =  1  ;  else  a  =  

2  ; 
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The next step 
• Once the words are understood, the next 

step is to understand the structure of the 
sentence 
 

• The process is known as syntax checking or 
parsing 

                    I           am          going          to            play 
 
 
             pronoun     aux          verb                         adverb 
 
 
             subject               verb                        adverb-phrase 
 
 
                                            Sentence  
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Parsing 
• Parsing a program is exactly the same 

process  as shown in previous slide. 
• Consider an expression 
 if x == y then z = 1 else z = 2  
       

      if stmt 
 

      predicate         then-stmt          else-stmt 
 
 

                                 = =                         =                          = 
 
 

                            x            y            z             1             z           2   
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Understanding the meaning 

• Once the sentence structure is 
understood we try to understand the 
meaning of the sentence (semantic 
analysis) 

• A challenging task  
• Example: 

 Prateek said Nitin left his assignment at 
home 

• What does his refer to? Prateek or Nitin? 
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Understanding the meaning 

• Worse case 

Amit said Amit left his assignment at 
home 

• Even worse 

Amit said Amit left Amit’s assignment 
at home 

• How many Amits are there? Which 
one left the assignment? Whose 
assignment got left? 
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Semantic Analysis 

• Too hard for compilers. They do not have 
capabilities similar to human understanding 

• However, compilers do perform analysis to 
understand the meaning and catch 
inconsistencies 

• Programming languages define strict rules to 
avoid such ambiguities 

 { int Amit = 3; 

  { int Amit = 4; 

     cout << Amit; 

  } 

 } 
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More on Semantic Analysis 

• Compilers perform many other checks 
besides variable bindings 

• Type checking 

 Amit left her work at home 

• There is a type mismatch between her 
and Amit. Presumably Amit is a male. 
And they are not the same person. 
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अश्वथामा हत: इतत   नरो वा कुञ्जरो वा 

“Ashwathama hathaha iti,  

  narova kunjarova” 

 
Ashwathama is dead. But, I am not certain 

whether it was a human or an elephant 

Example from Mahabharat 



Compiler structure once again 
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Code Optimization 

• No strong counter part with 
English, but is similar to 
editing/précis writing 

 
• Automatically modify programs so 

that they  
–Run faster 
–Use less resources (memory, 

registers, space, fewer fetches etc.) 
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Code Optimization 

• Some common optimizations 
–Common sub-expression elimination 
–Copy propagation 
–Dead code elimination 
–Code motion 
–Strength reduction 
–Constant folding 
 

• Example: x = 15 * 3 is transformed 
to x = 45 
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Example of Optimizations 
A : assignment   M : multiplication   D : division    E : exponent  

 
 PI = 3.14159 
 Area = 4 * PI * R^2 
 Volume = (4/3) * PI * R^3   3A+4M+1D+2E 
-------------------------------- 
 X = 3.14159 * R * R   
 Area = 4 * X 
 Volume = 1.33 * X * R   3A+5M 
-------------------------------- 
 Area = 4 * 3.14159 * R * R  
 Volume = ( Area / 3 ) * R   2A+4M+1D 
-------------------------------- 
 Area = 12.56636 * R * R   
 Volume = ( Area /3 ) * R   2A+3M+1D 
-------------------------------- 
 X = R * R    
 Area = 12.56636 * X 
 Volume = 4.18879 * X * R   3A+4M 
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Code Generation 

• Usually a two step process 
– Generate intermediate code from the 

semantic representation of the program 
– Generate machine code from the 

intermediate code 

 
• The advantage is that each phase is 

simple 
 
• Requires design of intermediate 

language 
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Code Generation 

• Most compilers perform translation 
between successive intermediate 
representations 

 
• Intermediate languages are generally 

ordered in decreasing level of abstraction 
from highest (source) to lowest (machine) 
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Code Generation 
• Abstractions at the source level 
 identifiers, operators, expressions, statements, 

conditionals, iteration, functions (user defined, 
system defined or libraries) 

 
• Abstraction at the target level 
 memory locations, registers, stack, opcodes, 

addressing modes, system libraries, interface to 
the operating systems 

 
• Code generation is mapping from source level 

abstractions to target machine abstractions 
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Code Generation 
• Map identifiers to locations 

(memory/storage allocation) 
• Explicate variable accesses (change 

identifier reference to 
relocatable/absolute address 

• Map source operators to opcodes 
or a sequence of opcodes 
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Code Generation 

• Convert conditionals and iterations to a 
test/jump or compare instructions 

• Layout parameter passing protocols: 
locations for parameters, return values, 
layout of activations frame etc. 

• Interface calls to library, runtime system, 
operating systems 
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Post translation Optimizations 

• Algebraic transformations and 
reordering 
– Remove/simplify operations like 

• Multiplication by 1 
• Multiplication by 0 
• Addition with 0 
 

– Reorder instructions based on 
• Commutative properties of operators 
• For example x+y is same as y+x  (always?) 
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Post translation Optimizations 

Instruction selection 
– Addressing mode selection 
– Opcode selection 
– Peephole optimization 
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Compiler structure 
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Something is missing 

• Information required about the program variables during 
compilation 
– Class of variable: keyword, identifier etc. 

– Type of variable: integer, float, array, function etc. 

– Amount of storage required 

– Address in the memory 

– Scope information  

• Location to store this information 
– Attributes with the variable (has obvious problems) 

– At a central repository and every phase refers to the repository 
whenever information is required 

• Normally the second approach is preferred 
– Use a data structure called symbol table 
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Final Compiler structure 
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Advantages of the model 

• Also known as Analysis-Synthesis model of 
compilation 
– Front end phases are known as analysis phases 
– Back end phases are known as synthesis phases 
 

• Each phase has a well defined work 
 
• Each phase handles a logical activity in the 

process of compilation 
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Advantages of the model … 

• Compiler is re-targetable 

 

• Source and machine independent code optimization 
is possible.  

 

• Optimization phase can be inserted after the front 
and back end phases have been developed and 
deployed 
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Issues in Compiler Design 
• Compilation appears to be very simple, but there are 

many pitfalls 
 
• How are erroneous programs handled? 
 
• Design of programming languages has a big impact on the 

complexity of the compiler 
 
• M*N vs. M+N problem 

– Compilers are required for all the languages and all the machines 
– For M languages and N machines we need to develop M*N 

compilers 
– However, there is lot of repetition of work because of similar 

activities in the front ends and back ends 
– Can we design only M front ends and N back ends, and some how 

link them to get all M*N compilers? 
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M*N vs M+N Problem 
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Universal Intermediate Language 

• Impossible to design a single intermediate 
language to accommodate all programming 
languages  
– Mythical universal intermediate language sought since 

mid 1950s (Aho, Sethi, Ullman) 

• However, common IRs for similar languages, and 
similar machines have been designed, and are 
used for compiler development 
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How do we know compilers generate 
correct code? 

• Prove that the compiler is correct.  
 
• However, program proving techniques do 

not exist at a level where large and complex 
programs like compilers can be proven to 
be correct 

 
• In practice do a systematic testing to 

increase confidence level 
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• Regression testing 
– Maintain a suite of test programs 
– Expected behavior of each program is 

documented 
– All the test programs are compiled using the 

compiler and deviations are reported to the 
compiler writer 

 

• Design of test suite 
– Test programs should exercise every statement 

of the compiler at least once 
– Usually requires great ingenuity to design such 

a test suite 
– Exhaustive test suites have been constructed 

for some languages 
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How to reduce development and testing 
effort? 

• DO NOT WRITE COMPILERS 
 

• GENERATE compilers  
 

• A compiler generator should be able to “generate” 
compiler from the source language and target machine 
specifications 
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Tool based Compiler Development 
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Bootstrapping  
• Compiler is a complex program and should not be 

written in assembly language 
• How to write compiler for a language in the same 

language (first time!)? 
• First time this experiment was done for Lisp 
• Initially, Lisp was used as a notation for writing 

functions.  
• Functions were then hand translated into 

assembly language and executed 
• McCarthy wrote a function eval[e] in Lisp that 

took a Lisp expression e as an argument 
• The function was later hand translated and it 

became an interpreter for Lisp 
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Bootstrap 

Image By: No machine-readable author provided. Tarquin~commonswiki assumed 

(based on copyright claims). - No machine-readable source provided. Own work 

assumed (based on copyright claims)., CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=105468 



Bootstrapping: Example  

• Lets solve a simpler problem first 
• Existing architecture and C 

compiler: 
–gcc-x86 compiles C language to x86 

• New architecture: 
–x335  

• How to develop cc-x335? 
– runs on x335, generates code for x335 
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Bootstrapping: Example  

• How to develop cc-x335? 
• Write a C compiler in C that 

emits x335 code 
• Compile using gcc-x86 on x86 

machine 
• We have a C compiler that 

emits x335 code 
–But runs on x86, not x355  
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Bootstrapping: Example  

• We have cc-x86-x335 
• Compiler runs on x86, generated code runs 

on x355 

• Compile the source code of C compiler 
with cc-x86-x335  

• There it is  
• the output is a binary that runs on x335 

• this binary is the desired  compiler :      
cc-x335 
 



Bootstrapping … 

• A compiler can be characterized by three languages: the 
source language (S), the target language (T), and the 
implementation language (I) 

 

• The three language S, I, and T can be quite different. Such 
a compiler is called cross-compiler 

 

• This is represented by a T-diagram as: 

 

 

 

• In textual form this can be represented as 

                   SIT 
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• Write a cross compiler for a language L in 
implementation language S to generate code for 
machine N 

• Existing compiler for S runs on a different 
machine M and generates code for M 

• When Compiler LSN is run through SMM we get 
compiler LMN 
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Bootstrapping a Compiler 
• Suppose LNN is to be developed on a machine M where 

LMM is available 

 

 

 

 

• Compile LLN second time using the generated compiler 
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Compilers of the 21st Century 

• Overall structure of almost all the compilers is similar to 
the structure we have discussed 

 
• The proportions of the effort have changed since the early 

days of compilation 
 
• Earlier front end phases were the most complex and 

expensive parts. 
 
• Today back end phases and optimization dominate all 

other phases. Front end phases are typically a smaller 
fraction of the total time 
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