
1 

Principles of Compiler Design 

Amey Karkare 
Department of Computer Science and 

Engineering, IIT Kanpur 
karkare@iitk.ac.in 

http://www.cse.iitk.ac.in/~karkare/cs335/ 



Acknowledgements 

• Most of the text in the slide is based 
on classic text Compilers: Principles, 
Techniques, and Tools by Aho, 
Sethi, Ullman and Lam 

• Slides are modified version of those 
created by Prof S K Aggarwal, IITK  

2 



3 

Motivation 

• Language processing is an important 
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• Where ever input has a structure 
one can think of language 
processing 
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• Where ever input has a structure 
one can think of language 
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• Why study compilers? 

– Compilers use the whole spectrum 
of language processing technology 

Motivation 
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Expectations? 

• What will we learn in the course? 
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What do we expect to achieve 
by the end of the course? 

• Knowledge to design, develop, 
understand, modify/enhance, and 
maintain compilers for (even complex!) 
programming languages 
 

                                        
                                    



6 

What do we expect to achieve 
by the end of the course? 

• Knowledge to design, develop, 
understand, modify/enhance, and 
maintain compilers for (even complex!) 
programming languages 
 

• Confidence to use language processing 
technology for software development 
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Organization of the course 
•Assignments          10% 

•Mid semester exam   20% 

•End semester exam   35% 

•Course Project      35% 
– Group of 2/3/4 (to be decided) 

•Tentative 
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Bit of History 
• How are programming languages implemented? Two 

major strategies: 
– Interpreters (old and much less studied) 
– Compilers (very well understood with 

mathematical foundations) 
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• Some environments provide both interpreter and 
compiler. Lisp, scheme etc. provide 
– Interpreter for development 
– Compiler for deployment 
                             

• Java 
– Java compiler: Java to interpretable bytecode 
– Java JIT: bytecode to executable image 
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Some early machines and 
implementations 

• IBM developed 704 in 1954. All 
programming was done in assembly 
language. Cost of software 
development far exceeded cost of 
hardware. Low productivity. 
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• Fortran I project (1954-1957): The 

first compiler was released 
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Fortran I 
• The first compiler had a huge impact on the 

programming languages and computer science. The 
whole new field of compiler design was started 
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Fortran I 
• The first compiler had a huge impact on the 

programming languages and computer science. The 
whole new field of compiler design was started 

 
• More than half the programmers were using Fortran 

by 1958 
 
• The development time was cut down to half 
 
• Led to enormous amount of theoretical work (lexical 

analysis, parsing, optimization, structured 
programming, code generation, error recovery etc.) 

 
• Modern compilers preserve the basic structure of 

the Fortran I compiler !!! 
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The big picture 
• Compiler is part of program 

development environment 
 
• The other typical components of this 

environment are editor, assembler, 
linker, loader, debugger, profiler etc. 

 
• The compiler (and all other tools) 

must support each other for easy 
program development 
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