
1

Principles of Compiler Design

Amey Karkare
Department of Computer Science and

Engineering, IIT Kanpur
karkare@iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs335/

Acknowledgements

• Most of the text in the slide is based
on classic text Compilers: Principles,
Techniques, and Tools by Aho,
Sethi, Ullman and Lam

• Slides are modified version of those
created by Prof S K Aggarwal, IITK

2

3

Motivation

• Language processing is an important
component of programming

3

Motivation

• Language processing is an important
component of programming

• A large number of systems software
and application programs require
structured input
– Operating Systems (command line processing)
– Databases (Query language processing)
– Type setting systems like Latex

3

Motivation

• Language processing is an important
component of programming

• A large number of systems software
and application programs require
structured input
– Operating Systems (command line processing)
– Databases (Query language processing)
– Type setting systems like Latex

• Software quality assurance and

software testing

4

• Where ever input has a structure
one can think of language
processing

Motivation

4

• Where ever input has a structure
one can think of language
processing

• Why study compilers?

– Compilers use the whole spectrum
of language processing technology

Motivation

5

Expectations?

• What will we learn in the course?

6

What do we expect to achieve
by the end of the course?

• Knowledge to design, develop,
understand, modify/enhance, and
maintain compilers for (even complex!)
programming languages

6

What do we expect to achieve
by the end of the course?

• Knowledge to design, develop,
understand, modify/enhance, and
maintain compilers for (even complex!)
programming languages

• Confidence to use language processing
technology for software development

7

Organization of the course
•Assignments 10%

•Mid semester exam 20%

•End semester exam 35%

•Course Project 35%
– Group of 2/3/4 (to be decided)

•Tentative

8

Bit of History
• How are programming languages implemented? Two

major strategies:
– Interpreters (old and much less studied)
– Compilers (very well understood with

mathematical foundations)

8

Bit of History
• How are programming languages implemented? Two

major strategies:
– Interpreters (old and much less studied)
– Compilers (very well understood with

mathematical foundations)

• Some environments provide both interpreter and
compiler. Lisp, scheme etc. provide
– Interpreter for development
– Compiler for deployment
–

8

Bit of History
• How are programming languages implemented? Two

major strategies:
– Interpreters (old and much less studied)
– Compilers (very well understood with

mathematical foundations)

• Some environments provide both interpreter and
compiler. Lisp, scheme etc. provide
– Interpreter for development
– Compiler for deployment

• Java
– Java compiler: Java to interpretable bytecode
– Java JIT: bytecode to executable image

9

Some early machines and
implementations

• IBM developed 704 in 1954. All
programming was done in assembly
language. Cost of software
development far exceeded cost of
hardware. Low productivity.

9

Some early machines and
implementations

• IBM developed 704 in 1954. All
programming was done in assembly
language. Cost of software
development far exceeded cost of
hardware. Low productivity.

• Speedcoding interpreter: programs

ran about 10 times slower than hand
written assembly code

9

Some early machines and
implementations

• IBM developed 704 in 1954. All
programming was done in assembly
language. Cost of software
development far exceeded cost of
hardware. Low productivity.

• Speedcoding interpreter: programs

ran about 10 times slower than hand
written assembly code

• John Backus (in 1954): Proposed a

program that translated high level
expressions into native machine code.
Skeptism all around. Most people
thought it was impossible

9

Some early machines and
implementations

• IBM developed 704 in 1954. All
programming was done in assembly
language. Cost of software
development far exceeded cost of
hardware. Low productivity.

• Speedcoding interpreter: programs

ran about 10 times slower than hand
written assembly code

• John Backus (in 1954): Proposed a

program that translated high level
expressions into native machine code.
Skeptism all around. Most people
thought it was impossible

• Fortran I project (1954-1957): The

first compiler was released

10

Fortran I
• The first compiler had a huge impact on the

programming languages and computer science. The
whole new field of compiler design was started

10

Fortran I
• The first compiler had a huge impact on the

programming languages and computer science. The
whole new field of compiler design was started

• More than half the programmers were using Fortran

by 1958

10

Fortran I
• The first compiler had a huge impact on the

programming languages and computer science. The
whole new field of compiler design was started

• More than half the programmers were using Fortran

by 1958

• The development time was cut down to half

10

Fortran I
• The first compiler had a huge impact on the

programming languages and computer science. The
whole new field of compiler design was started

• More than half the programmers were using Fortran

by 1958

• The development time was cut down to half

• Led to enormous amount of theoretical work (lexical

analysis, parsing, optimization, structured
programming, code generation, error recovery etc.)

10

Fortran I
• The first compiler had a huge impact on the

programming languages and computer science. The
whole new field of compiler design was started

• More than half the programmers were using Fortran

by 1958

• The development time was cut down to half

• Led to enormous amount of theoretical work (lexical

analysis, parsing, optimization, structured
programming, code generation, error recovery etc.)

• Modern compilers preserve the basic structure of

the Fortran I compiler !!!

11

The big picture
• Compiler is part of program

development environment

• The other typical components of this

environment are editor, assembler,
linker, loader, debugger, profiler etc.

• The compiler (and all other tools)

must support each other for easy
program development

12

Editor

Programmer
Source
Program

12

Editor Compiler

Programmer
Source
Program

Assembly
code

12

Editor Compiler Assembler

Programmer
Source
Program

Assembly
code

Machine
Code

12

Editor Compiler Assembler

Linker

Programmer
Source
Program

Assembly
code

Machine
Code

Resolved
Machine
Code

12

Editor Compiler Assembler

Linker

Loader

Programmer
Source
Program

Assembly
code

Machine
Code

Resolved
Machine
Code

Executable
Image

Execution on
the target machine

12

Editor Compiler Assembler

Linker

Loader

Programmer
Source
Program

Assembly
code

Machine
Code

Resolved
Machine
Code

Executable
Image

Execution on
the target machine

Normally end
up with error

12

Editor Compiler Assembler

Linker

Loader Debugger

Programmer
Source
Program

Assembly
code

Machine
Code

Resolved
Machine
Code

Executable
Image

Debugging
results

Execution on
the target machine

Normally end
up with error

Execute under
Control of
debugger

12

Editor Compiler Assembler

Linker

Loader Debugger

Programmer
Source
Program

Assembly
code

Machine
Code

Resolved
Machine
Code

Executable
Image

Debugging
results

Programmer
does manual
correction of
the code

Execution on
the target machine

Normally end
up with error

Execute under
Control of
debugger

